Yu Hao, Tang Wentian, Mu Guanyu, Wang Haocheng, Chang Xiaocong, Dong Huijuan, Qi Liqun, Zhang Guangyu, Li Tianlong
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
Department of Analytical, Physical and Colloidal Chemistry, Institute of Pharmacy, Sechenov University, 119991 Moscow, Russia.
Micromachines (Basel). 2018 Oct 23;9(11):540. doi: 10.3390/mi9110540.
Recent strides in micro- and nanomanufacturing technologies have sparked the development of micro-/nanorobots with enhanced power and functionality. Due to the advantages of on-demand motion control, long lifetime, and great biocompatibility, magnetic propelled micro-/nanorobots have exhibited considerable promise in the fields of drug delivery, biosensing, bioimaging, and environmental remediation. The magnetic fields which provide energy for propulsion can be categorized into rotating and oscillating magnetic fields. In this review, recent developments in oscillating magnetic propelled micro-/nanorobot fabrication techniques (such as electrodeposition, self-assembly, electron beam evaporation, and three-dimensional (3D) direct laser writing) are summarized. The motion mechanism of oscillating magnetic propelled micro-/nanorobots are also discussed, including wagging propulsion, surface walker propulsion, and scallop propulsion. With continuous innovation, micro-/nanorobots can become a promising candidate for future applications in the biomedical field. As a step toward designing and building such micro-/nanorobots, several types of common fabrication techniques are briefly introduced. Then, we focus on three propulsion mechanisms of micro-/nanorobots in oscillation magnetic fields: (1) wagging propulsion; (2) surface walker; and (3) scallop propulsion. Finally, a summary table is provided to compare the abilities of different micro-/nanorobots driven by oscillating magnetic fields.
微纳制造技术的最新进展推动了具有增强动力和功能的微纳机器人的发展。由于具有按需运动控制、长寿命和良好生物相容性等优点,磁驱动微纳机器人在药物递送、生物传感、生物成像和环境修复等领域展现出了巨大的潜力。为推进提供能量的磁场可分为旋转磁场和振荡磁场。在这篇综述中,总结了振荡磁驱动微纳机器人制造技术(如电沉积、自组装、电子束蒸发和三维(3D)直接激光写入)的最新进展。还讨论了振荡磁驱动微纳机器人的运动机制,包括摆动推进、表面行走者推进和扇贝推进。随着不断创新,微纳机器人有望成为未来生物医学领域应用的候选者。作为设计和制造此类微纳机器人的第一步,简要介绍了几种常见的制造技术。然后,我们重点关注微纳机器人在振荡磁场中的三种推进机制:(1)摆动推进;(2)表面行走者;(3)扇贝推进。最后,提供了一个汇总表来比较不同振荡磁驱动微纳机器人的能力。