Suppr超能文献

当前可用的计算机辅助检测能够发现癌症,但需要人工操作。

Current Available Computer-Aided Detection Catches Cancer but Requires a Human Operator.

作者信息

Saenz Rios Florentino, Movva Giri, Movva Hari, Nguyen Quan D

机构信息

Department of Radiology, University of Texas Medical Branch, Galveston, USA.

School of Medicine, University of Texas Rio Grande Valley, Edinburg, USA.

出版信息

Cureus. 2020 Dec 19;12(12):e12177. doi: 10.7759/cureus.12177.

Abstract

INTRODUCTION

This study intends to show that the current widely used computer-aided detection (CAD) may be helpful, but it is not an adequate replacement for the human input required to interpret mammograms accurately. However, this is not to discredit CAD's ability but to further encourage the adoption of artificial intelligence-based algorithms into the toolset of radiologists.

METHODS

This study will use Hologic (Marlborough, MA, USA) and General Electric (Boston, MA, USA) CAD read images provided by patients found to be Breast Imaging Reporting and Data System (BI-RADS) 6 from 2019 to 2020. In addition, patient information will be pulled from our institution's emergency medical record to confirm the findings seen in the pathologist report and the radiology read.

RESULTS

Data from a total of 24 female breast cancer patients from January 31st 2019 to April 31st 2020, was gathered from our institution's emergency medical record with restrictions in patient numbers due to coronavirus disease 2019 (COVID-19). Within our patient population, CAD imaging was shown to be statistically significant in misidentifying breast cancer, while radiologist interpretation still proves to be the most effective tool.

CONCLUSION

Despite a low sample size due to COVID-19, this study found that CAD did have significant difficulty in differentiating benign vs. malignant lesions. CAD should not be ignored, but it is not specific enough. Although CAD often marks cancer, it also marks several areas that are not cancer. CAD is currently best used as an additional tool for the radiologist.

摘要

引言

本研究旨在表明,当前广泛使用的计算机辅助检测(CAD)可能会有所帮助,但它并不能完全替代准确解读乳房X光片所需的人工输入。然而,这并非是要诋毁CAD的能力,而是为了进一步鼓励将基于人工智能的算法纳入放射科医生的工具集。

方法

本研究将使用由患者提供的Hologic(美国马萨诸塞州马尔伯勒)和通用电气(美国马萨诸塞州波士顿)CAD读取的图像,这些患者在2019年至2020年期间被判定为乳房影像报告和数据系统(BI-RADS)6级。此外,将从我们机构的急诊医疗记录中提取患者信息,以确认病理报告和放射科解读中所见的结果。

结果

从2019年1月31日至2020年4月31日,共收集了24名女性乳腺癌患者的数据,这些数据来自我们机构的急诊医疗记录,由于2019冠状病毒病(COVID-19),患者数量受到限制。在我们的患者群体中,CAD成像在误判乳腺癌方面显示出统计学上的显著差异,而放射科医生的解读仍然被证明是最有效的工具。

结论

尽管由于COVID-19样本量较小,但本研究发现CAD在区分良性与恶性病变方面确实存在重大困难。CAD不应被忽视,但它的特异性不足。虽然CAD经常标记出癌症,但它也标记了一些并非癌症的区域。目前,CAD最好用作放射科医生的辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验