The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China.
Biomed Res Int. 2020 Dec 7;2020:8450656. doi: 10.1155/2020/8450656. eCollection 2020.
: Gastric cancer (GC) is the common leading cause of cancer-related death worldwide. Immune-related genes (IRGs) may potentially predict lymph node metastasis (LNM). We aimed to develop a preoperative model to predict LNM based on these IRGs. : In this paper, we compared and evaluated three machine learning models to predict LNM based on publicly available gene expression data from TCGA-STAD. The Pearson correlation coefficient (PCC) method was utilized to feature selection according to its relationships with LN status. The performance of the model was assessed using the area under the curve (AUC) and F1 score. : The Naive Bayesian model showed better performance and was constructed based on 26 selected gene features, with AUCs of 0.741 in the training set and 0.688 in the test set. The F1 score in the training set and test set was 0.652 and 0.597, respectively. Furthermore, Naive Bayesian model based on 26 IRGs is the first diagnostic tool for the identification of LNM in advanced GC. : These results indicate that our new methods have the value of auxiliary diagnosis with promising clinical potential.
胃癌(GC)是全球癌症相关死亡的常见主要原因。免疫相关基因(IRGs)可能潜在地预测淋巴结转移(LNM)。我们旨在基于这些 IRGs 开发一种术前模型来预测 LNM。
在本文中,我们比较和评估了三种基于 TCGA-STAD 公开基因表达数据来预测 LNM 的机器学习模型。根据与 LN 状态的关系,采用皮尔逊相关系数(PCC)方法进行特征选择。使用曲线下面积(AUC)和 F1 评分评估模型的性能。
朴素贝叶斯模型显示出更好的性能,并基于 26 个选定的基因特征构建,在训练集中 AUC 为 0.741,在测试集中 AUC 为 0.688。在训练集和测试集中的 F1 评分分别为 0.652 和 0.597。此外,基于 26 个 IRGs 的朴素贝叶斯模型是识别晚期 GC 中 LNM 的第一个诊断工具。
这些结果表明,我们的新方法具有辅助诊断的价值,具有有前途的临床潜力。