Suppr超能文献

基于基因表达和临床病理模型预测乳腺癌的淋巴结转移:基于人群队列的开发和验证。

Prediction of Lymph Node Metastasis in Breast Cancer by Gene Expression and Clinicopathological Models: Development and Validation within a Population-Based Cohort.

机构信息

Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.

Department of Plastic and Reconstructive Surgery, Skåne University Hospital, Malmö, Sweden.

出版信息

Clin Cancer Res. 2019 Nov 1;25(21):6368-6381. doi: 10.1158/1078-0432.CCR-19-0075. Epub 2019 Jul 24.

Abstract

PURPOSE

More than 70% of patients with breast cancer present with node-negative disease, yet all undergo surgical axillary staging. We aimed to define predictors of nodal metastasis using clinicopathological characteristics (CLINICAL), gene expression data (GEX), and mixed features (MIXED) and to identify patients at low risk of metastasis who might be spared sentinel lymph node biopsy (SLNB). Breast tumors ( = 3,023) from the population-based Sweden Cancerome Analysis Network-Breast initiative were profiled by RNA sequencing and linked to clinicopathologic characteristics. Seven machine-learning models present the discriminative ability of N0/N+ in development ( = 2,278) and independent validation cohorts ( = 745) stratified as ERHER2, HER2, and TNBC. Possible SLNB reduction rates are proposed by applying CLINICAL and MIXED predictors.

RESULTS

In the validation cohort, the MIXED predictor showed the highest area under ROC curves to assess nodal metastasis; AUC = 0.72. For the subgroups, the AUCs for MIXED, CLINICAL, and GEX predictors ranged from 0.66 to 0.72, 0.65 to 0.73, and 0.58 to 0.67, respectively. Enriched proliferation metagene and luminal B features were noticed in node-positive ERHER2 and HER2 tumors, while upregulated basal-like features were observed in node-negative TNBC tumors. The SLNB reduction rates in patients with ERHER2 tumors were 6% to 7% higher for the MIXED predictor compared with the CLINICAL predictor accepting false negative rates of 5% to 10%.

CONCLUSIONS

Although CLINICAL and MIXED predictors of nodal metastasis had comparable accuracy, the MIXED predictor identified more node-negative patients. This translational approach holds promise for development of classifiers to reduce the rates of SLNB for patients at low risk of nodal involvement.

摘要

目的

超过 70%的乳腺癌患者表现为淋巴结阴性疾病,但所有患者均接受外科腋窝分期。我们旨在使用临床病理特征(CLINICAL)、基因表达数据(GEX)和混合特征(MIXED)定义淋巴结转移的预测因子,并确定可能免于前哨淋巴结活检(SLNB)的低转移风险患者。对基于人群的瑞典癌症分析网络-乳腺癌倡议中的乳腺肿瘤(=3023)进行 RNA 测序分析,并与临床病理特征相关联。七种机器学习模型展示了在发展(=2278)和独立验证队列(=745)中区分 N0/N+的能力,这些队列根据 ERHER2、HER2 和 TNBC 进行分层。通过应用 CLINICAL 和 MIXED 预测因子,提出了可能的 SLNB 减少率。

结果

在验证队列中,MIXED 预测因子显示出评估淋巴结转移的最高 ROC 曲线下面积;AUC=0.72。对于亚组,MIXED、CLINICAL 和 GEX 预测因子的 AUC 分别在 0.66 到 0.72、0.65 到 0.73 和 0.58 到 0.67 之间。在阳性 ERHER2 和 HER2 肿瘤中,发现了富集的增殖代谢基因和管腔 B 特征,而在阴性 TNBC 肿瘤中,观察到上调的基底样特征。与接受假阴性率为 5%至 10%的 CLINICAL 预测因子相比,MIXED 预测因子在接受 ERHER2 肿瘤的患者中,SLNB 减少率高 6%至 7%。

结论

尽管淋巴结转移的 CLINICAL 和 MIXED 预测因子具有相当的准确性,但 MIXED 预测因子确定了更多的淋巴结阴性患者。这种转化方法有望开发分类器,以降低低淋巴结受累风险患者的 SLNB 率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验