Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France.
Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, 91191, France.
Mass Spectrom Rev. 2022 Sep;41(5):695-721. doi: 10.1002/mas.21685. Epub 2021 Jan 25.
Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.
代谢组学近年来在许多应用中变得越来越流行,从临床诊断、人类健康到生物技术问题。尽管技术进步,代谢组学研究仍然受到鉴定所有代谢物的困难的限制,这是一类具有很大化学多样性的化合物。虽然通常使用冗长的色谱分析来获得全面的数据,但许多同量异位和同分异构体代谢物仍然无法解决,这是化合物鉴定的关键点。目前,离子淌度谱被探索用于代谢组学,以提高代谢组覆盖度、分析通量和异构体分离。在这篇综述中,考虑到离子淌度仪器的使用,讨论了非靶向代谢组学的典型工作流程的所有步骤。首先概述代谢组学,然后简要描述离子淌度仪器。讨论了离子淌度在复杂混合物分析中的潜力,关于其与质谱仪的单独耦合,在质量分析之前提供气相分离,以及其与不同分离平台的组合(常规连接,但也有多维离子淌度耦合),提供多维分离。还描述了各种用于改善离子淌度分离的仪器和分析条件。最后,检查了用于代谢物鉴定的数据挖掘,包括软件包和可视化方法,以及离子淌度数据库的构建。