Suppr超能文献

OXA-48 样β-内酰胺酶水解碳青霉烯类抗生素的机制基础。

Mechanistic Basis of OXA-48-like β-Lactamases' Hydrolysis of Carbapenems.

机构信息

Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States.

出版信息

ACS Infect Dis. 2021 Feb 12;7(2):445-460. doi: 10.1021/acsinfecdis.0c00798. Epub 2021 Jan 25.

Abstract

Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are an important source of resistance to these last resort β-lactam antibiotics. OXA-48 is a member of a group of CHDLs named OXA-48-like enzymes. On the basis of sequence similarity, OXA-163 can be classified as an OXA-48-like enzyme, but it has altered substrate specificity. Compared to OXA-48, it shows impaired activity for carbapenems but displays an enhanced hydrolysis of oxyimino-cephalosporins. Here, we address the mechanistic and structural basis for carbapenem hydrolysis by OXA-48-like enzymes. Pre-steady-state kinetic analysis indicates that the rate-limiting step for OXA-48 and OXA-163 hydrolysis of carbapenems is deacylation and that the greatly reduced carbapenemase activity of OXA-163 compared to that of OXA-48 is due entirely to a slower deacylation reaction. Furthermore, our structural data indicate that the positioning of the β5-β6 loop is necessary for carbapenem hydrolysis by OXA-48. A major difference between the OXA-48 and OXA-163 complexes with carbapenems is that the 214-RIEP-217 deletion in OXA-163 creates a large opening in the active site that is absent in the OXA-48/carbapenem structures. We propose that the larger active site results in less constraint on the conformation of the 6α-hydroxyethyl group in the acyl-enzyme. The acyl-enzyme intermediate assumes multiple conformations, most of which are incompatible with rapid deacylation. Consistent with this hypothesis, molecular dynamics simulations indicate that the most stable complex is formed between OXA-48 and imipenem, which correlates with the OXA-48 hydrolysis of imipenem being the fastest observed. Furthermore, the OXA-163 complexes with imipenem and meropenem are the least stable and show significant conformational fluctuations, which correlates with the slow hydrolysis of these substrates.

摘要

碳青霉烯水解类 Dβ-内酰胺酶(CHDLs)是对这些最后手段β-内酰胺抗生素产生耐药性的重要来源。OXA-48 是一组被称为 OXA-48 样酶的 CHDLs 的成员。根据序列相似性,OXA-163 可被归类为 OXA-48 样酶,但它具有改变的底物特异性。与 OXA-48 相比,它对碳青霉烯的活性降低,但对氧肟头孢菌素的水解增强。在这里,我们研究了 OXA-48 样酶对碳青霉烯水解的机制和结构基础。预稳态动力学分析表明,OXA-48 和 OXA-163 水解碳青霉烯的限速步骤是脱酰基,与 OXA-48 相比,OXA-163 的碳青霉烯酶活性大大降低完全是由于脱酰基反应较慢。此外,我们的结构数据表明,β5-β6 环的定位对于 OXA-48 的碳青霉烯水解是必要的。OXA-48 和 OXA-163 与碳青霉烯复合物之间的一个主要区别是,OXA-163 中的 214-RIEP-217 缺失在活性位点中产生了一个较大的开口,而在 OXA-48/碳青霉烯结构中不存在该开口。我们提出,较大的活性位点导致酰基-酶中 6α-羟乙基基团的构象受到的约束较小。酰-酶中间体呈现多种构象,其中大多数与快速脱酰基反应不兼容。与该假设一致,分子动力学模拟表明,最稳定的复合物是在 OXA-48 和亚胺培南之间形成的,这与 OXA-48 对亚胺培南的水解是观察到的最快的反应相对应。此外,OXA-163 与亚胺培南和美罗培南的复合物最不稳定,表现出明显的构象波动,这与这些底物的缓慢水解相对应。

相似文献

引用本文的文献

8
Evolution of β-lactamase-mediated cefiderocol resistance.β-内酰胺酶介导的头孢地尔耐药性的演变。
J Antimicrob Chemother. 2022 Aug 25;77(9):2429-2436. doi: 10.1093/jac/dkac221.

本文引用的文献

2
Substrate Specificity of OXA-48 after β5-β6 Loop Replacement.OXA-48 β5-β6 环替换后的底物特异性。
ACS Infect Dis. 2020 May 8;6(5):1032-1043. doi: 10.1021/acsinfecdis.9b00452. Epub 2020 Mar 19.
10
The antibiotic resistance crisis, with a focus on the United States.抗生素耐药危机,聚焦于美国。
J Antibiot (Tokyo). 2017 May;70(5):520-526. doi: 10.1038/ja.2017.30. Epub 2017 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验