Suppr超能文献

蛋白质载入海绵状聚乳酸-羟基乙酸共聚物微球

Protein Loading into Spongelike PLGA Microspheres.

作者信息

Kim Yuyoung, Sah Hongkee

机构信息

College of Pharmacy, Ewha Womans University, 52 Ewhayeodaegil, Seodaemun-gu, Seoul 03760, Korea.

Pharmaceutical Product Research Laboratories, Dong-A ST R&D Center, 21, Geumhwa-ro 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea.

出版信息

Pharmaceutics. 2021 Jan 21;13(2):137. doi: 10.3390/pharmaceutics13020137.

Abstract

A self-healing microencapsulation process involves mixing preformed porous microspheres in an aqueous solution containing the desired protein and converting them into closed-pore microspheres. Spongelike poly-d,l-lactide--glycolide (PLGA) microspheres are expected to be advantageous to protein loading through self-healing. This study aimed to identify and assess relevant critical parameters, using lysozyme as a model protein. Several parameters governed lysozyme loading. The pore characteristics (open-pore, closed-pore, and porosity) of the preformed microspheres substantially affected lysozyme loading efficiency. The type of surfactant present in the aqueous medium also influenced lysozyme loading efficiency. For instance, cetyltrimethylammonium bromide showing a superior wetting functionality increased the extent of lysozyme loading more than twice as compared to Tween 80. Dried preformed microspheres were commonly used before, but our study found that wet microspheres obtained at the end of the microsphere manufacturing process displayed significant advantages in lysozyme loading. Not only could an incubation time for hydrating the microspheres be shortened dramatically, but also a much more considerable amount of lysozyme was encapsulated. Interestingly, the degree of microsphere hydration determined the microstructure and morphology of closed-pore microspheres after self-healing. Understanding these critical process parameters would help tailor protein loading into spongelike PLGA microspheres in a bespoke manner.

摘要

一种自修复微囊化过程包括将预先形成的多孔微球在含有所需蛋白质的水溶液中混合,并将它们转化为闭孔微球。海绵状聚-d,l-丙交酯-乙交酯(PLGA)微球有望通过自修复在蛋白质负载方面具有优势。本研究旨在以溶菌酶作为模型蛋白来识别和评估相关关键参数。有几个参数控制着溶菌酶的负载。预先形成的微球的孔特征(开孔、闭孔和孔隙率)对溶菌酶负载效率有显著影响。水介质中存在的表面活性剂类型也会影响溶菌酶负载效率。例如,具有优异润湿功能的十六烷基三甲基溴化铵比吐温80使溶菌酶负载程度增加了两倍多。以前通常使用干燥的预先形成的微球,但我们的研究发现,在微球制造过程结束时获得的湿微球在溶菌酶负载方面显示出显著优势。不仅可以大大缩短微球水合的孵育时间,而且可以包封更多量的溶菌酶。有趣的是,微球水合程度决定了自修复后闭孔微球的微观结构和形态。了解这些关键工艺参数将有助于以定制方式将蛋白质负载到海绵状PLGA微球中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e5/7909807/c9b92cf87604/pharmaceutics-13-00137-g001.jpg

相似文献

1
Protein Loading into Spongelike PLGA Microspheres.
Pharmaceutics. 2021 Jan 21;13(2):137. doi: 10.3390/pharmaceutics13020137.
2
A biomimetic approach to active self-microencapsulation of proteins in PLGA.
J Control Release. 2014 Dec 28;196:60-70. doi: 10.1016/j.jconrel.2014.08.029. Epub 2014 Sep 8.
5
Controlled Release of Lysozyme from Double-Walled Poly(Lactide-Co-Glycolide) (PLGA) Microspheres.
Polymers (Basel). 2017 Oct 3;9(10):485. doi: 10.3390/polym9100485.
6
Active self-healing encapsulation of vaccine antigens in PLGA microspheres.
J Control Release. 2013 Jan 10;165(1):62-74. doi: 10.1016/j.jconrel.2012.10.012. Epub 2012 Oct 24.
7
Preparation of PLGA Nanoparticles by Milling Spongelike PLGA Microspheres.
Pharmaceutics. 2022 Jul 24;14(8):1540. doi: 10.3390/pharmaceutics14081540.
8
Lysozyme microencapsulation within biodegradable PLGA microspheres: urea effect on protein release and stability.
Biotechnol Bioeng. 2000 Nov 5;70(3):270-7. doi: 10.1002/1097-0290(20001105)70:3<270::aid-bit4>3.0.co;2-8.
9
Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications.
J Control Release. 2014 Nov 10;193:324-40. doi: 10.1016/j.jconrel.2014.09.003. Epub 2014 Sep 10.
10
PLGA Microspheres Incorporated Gelatin Scaffold: Microspheres Modulate Scaffold Properties.
Int J Biomater. 2009;2009:143659. doi: 10.1155/2009/143659. Epub 2009 Mar 30.

引用本文的文献

1
From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications.
Biomater Transl. 2024 Sep 28;5(3):274-299. doi: 10.12336/biomatertransl.2024.03.005. eCollection 2024.
2
Template-Based Porous Hydrogel Microparticles as Carriers for Therapeutic Proteins.
ACS Bio Med Chem Au. 2023 Mar 10;3(3):252-260. doi: 10.1021/acsbiomedchemau.3c00001. eCollection 2023 Jun 21.

本文引用的文献

1
Biodegradable Microcapsules Prepared by Self-Healing of Porous Microspheres.
ACS Macro Lett. 2012 Jun 19;1(6):697-700. doi: 10.1021/mz200222d. Epub 2012 May 21.
2
Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles.
ACS Biomater Sci Eng. 2020 Nov 9;6(11):6053-6062. doi: 10.1021/acsbiomaterials.0c01228. Epub 2020 Oct 9.
4
Recent advances in the formulation of PLGA microparticles for controlled drug delivery.
Prog Biomater. 2020 Dec;9(4):153-174. doi: 10.1007/s40204-020-00139-y. Epub 2020 Oct 15.
5
Porous Polymeric Microspheres With Controllable Pore Diameters for Tissue Engineered Lung Tumor Model Development.
Front Bioeng Biotechnol. 2020 Jul 10;8:799. doi: 10.3389/fbioe.2020.00799. eCollection 2020.
6
PLGA Microspheres of hGH of Preserved Native State Prepared Using a Self-Regulated Process.
Pharmaceutics. 2020 Jul 20;12(7):683. doi: 10.3390/pharmaceutics12070683.
7
Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination.
Sci Adv. 2020 May 22;6(21):eaay7735. doi: 10.1126/sciadv.aay7735. eCollection 2020 May.
9
Effect of cetyltrimethylammonium bromide (CTAB) on the conformation of a hen egg white lysozyme: A spectroscopic and molecular docking study.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Aug 5;219:313-318. doi: 10.1016/j.saa.2019.04.062. Epub 2019 Apr 24.
10
Microfluidic Based Fabrication and Characterization of Highly Porous Polymeric Microspheres.
Polymers (Basel). 2019 Mar 5;11(3):419. doi: 10.3390/polym11030419.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验