Department of Stress Biology and Plant Pathology, CEBAS-CSIC, 30100 Murcia, Spain.
Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
Int J Mol Sci. 2021 Jan 21;22(3):1063. doi: 10.3390/ijms22031063.
Salinity has a negative impact on plant growth, with photosynthesis being downregulated partially due to osmotic effect and enhanced cellular oxidation. Redox signaling contributes to the plant response playing thioredoxins (TRXs) a central role. In this work we explore the potential contribution of Arabidopsis TRX1 to the photosynthetic response under salinity analyzing Arabidopsis wild-type (WT) and two mutant lines in their growth under short photoperiod and higher light intensity than previous reported works. Stomatal development and apertures and the antioxidant, hormonal and metabolic acclimation are also analyzed. In control conditions mutant plants displayed less and larger developed stomata and higher pore size which could underlie their higher stomatal conductance, without being affected in other photosynthetic parameters. Under salinity, all genotypes displayed a general decrease in photosynthesis and the oxidative status in the mutant lines was altered, with higher levels of HO and NO but also higher ascorbate/glutathione (ASC/GSH) redox states than WT plants. Finally, sugar changes and increases in abscisic acid (ABA) and NO may be involved in the observed higher stomatal response of the TRX1-altered plants. Therefore, the lack of affected stomata development and opening and the mutants modulate their antioxidant, metabolic and hormonal responses to optimize their adaptation to salinity.
盐度对植物生长有负面影响,光合作用部分受到抑制,这主要是由于渗透作用和细胞氧化增强。氧化还原信号转导在植物对盐度的反应中发挥作用,其中硫氧还蛋白(TRXs)起着核心作用。在这项工作中,我们探索了拟南芥 TRX1 在盐胁迫下对光合作用的潜在贡献,分析了在短光照和比以前报道的工作更高的光强条件下生长的拟南芥野生型(WT)和两个突变体系。还分析了气孔发育和开度以及抗氧化剂、激素和代谢的适应。在对照条件下,突变体植物的气孔发育较少且较大,气孔孔径较大,这可能导致其气孔导度较高,但对其他光合作用参数没有影响。在盐胁迫下,所有基因型的光合作用普遍下降,而突变体系的氧化状态发生改变,HO 和 NO 的水平升高,而 ASC/GSH 氧化还原状态比 WT 植物高。最后,糖的变化和脱落酸(ABA)和 NO 的增加可能参与了观察到的 TRX1 改变的植物更高的气孔反应。因此,缺乏 TRX1 会影响气孔的发育和张开,而突变体则调节它们的抗氧化、代谢和激素反应,以优化对盐度的适应。