Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, 226-8503 Yokohama, Japan
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, 226-8503 Yokohama, Japan.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8296-E8304. doi: 10.1073/pnas.1808284115. Epub 2018 Aug 13.
Thiol-based redox regulation is central to adjusting chloroplast functions under varying light conditions. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been well recognized to mediate the light-responsive reductive control of target proteins; however, the molecular basis for reoxidizing its targets in the dark remains unidentified. Here, we report a mechanism of oxidative thiol modulation in chloroplasts. We biochemically characterized a chloroplast stroma-localized atypical Trx from , designated as Trx-like2 (TrxL2). TrxL2 had redox-active properties with an unusually less negative redox potential. By an affinity chromatography-based method, TrxL2 was shown to interact with a range of chloroplast redox-regulated proteins. The direct discrimination of thiol status indicated that TrxL2 can efficiently oxidize, but not reduce, these proteins. A notable exception was found in 2-Cys peroxiredoxin (2CP); TrxL2 was able to reduce 2CP with high efficiency. We achieved a complete in vitro reconstitution of the TrxL2/2CP redox cascade for oxidizing redox-regulated proteins and draining reducing power to hydrogen peroxide (HO). We further addressed the physiological relevance of this system by analyzing protein-oxidation dynamics. In plants, a decreased level of 2CP led to the impairment of the reoxidation of redox-regulated proteins during light-dark transitions. A delayed response of protein reoxidation was concomitant with the prolonged accumulation of reducing power in TrxL2. These results suggest an in vivo function of the TrxL2/2CP redox cascade for driving oxidative thiol modulation in chloroplasts.
基于硫醇的氧化还原调控对于调节不同光照条件下的叶绿体功能至关重要。通过铁氧还蛋白-硫氧还蛋白还原酶(FTR)/硫氧还蛋白(Trx)途径的氧化还原级联已被很好地认为介导了靶蛋白的光响应还原控制;然而,其在黑暗中重新氧化其靶标的分子基础仍未确定。在这里,我们报告了叶绿体中氧化硫醇调节的一种机制。我们从 中生化特性鉴定了一种定位于叶绿体基质的非典型 Trx,命名为 Trx 样 2(TrxL2)。TrxL2 具有氧化还原活性,其氧化还原电位异常负。通过基于亲和层析的方法,显示 TrxL2 与一系列叶绿体氧化还原调节蛋白相互作用。直接区分硫醇状态表明 TrxL2 可以有效地氧化,但不能还原这些蛋白质。一个显著的例外是 2-Cys 过氧化物酶(2CP);TrxL2 能够高效还原 2CP。我们实现了 TrxL2/2CP 氧化还原级联在体外完全重组,用于氧化氧化还原调节蛋白并将还原力耗散到过氧化氢(HO)。我们通过分析蛋白质氧化动力学进一步解决了这个系统的生理相关性。在 植物中,2CP 水平降低导致在光暗转换过程中氧化还原调节蛋白的再氧化受损。蛋白质再氧化的反应延迟伴随着 TrxL2 中还原力的延长积累。这些结果表明 TrxL2/2CP 氧化还原级联在叶绿体中驱动氧化硫醇调节的体内功能。