Han Seok Hee, Kim Sung Il, Lee Hae-Ryung, Lim Seung-Min, Yeon Song Yi, Oh Min-Ah, Lee Sunmi, Sun Jeong-Yun, Joo Young-Chang, Chung Taek Dong
Department of Chemistry, Seoul National University, Seoul 08826, Korea.
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.
ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6606-6614. doi: 10.1021/acsami.0c19892. Epub 2021 Jan 26.
In response to the extensive utilization of ionic circuits, including in iontronics and wearable devices, a new method for fabricating a hydrogel-based ionic circuit on a polydimethylsiloxane (PDMS) microchip is reported. Prolonged UV/ozone oxidation combined with proper surface functionalizations and a novel microchip bonding method using thiol-epoxy click reaction enable the robust attachment of the photopolymerized hydrogel to the microchannel surface for eventual operation in electrolytes as an ionic circuit. The stretchable ionic diode constructed on the PDMS microchip shows a superior rectification ratio even under tensile stress and long-term storage stability. Furthermore, the combination of the ionic circuit and unique material properties of PDMS allows us to maximize the versatility and diversify the functionalities of the iontronic device, as demonstrated in a pressure-driven ionic switch and chip-integrated ionic regulator. Its iontronic signal transmission mimicking the excitatory and inhibitory synapses also evinces the potential of the hydrogel-based iontronics on the PDMS microchip as developed toward an aqueous neuromimetic information processor while opening up new opportunities for various bioinspired applications.
针对离子电路在包括离子电子学和可穿戴设备等领域的广泛应用,本文报道了一种在聚二甲基硅氧烷(PDMS)微芯片上制备水凝胶基离子电路的新方法。长时间的紫外/臭氧氧化结合适当的表面功能化以及使用硫醇-环氧点击反应的新型微芯片键合方法,能够使光聚合水凝胶牢固地附着在微通道表面,最终在电解质中作为离子电路运行。构建在PDMS微芯片上的可拉伸离子二极管即使在拉伸应力和长期储存稳定性下也显示出优异的整流比。此外,离子电路与PDMS独特材料特性的结合使我们能够最大限度地提高离子电子器件的多功能性并使其功能多样化,如在压力驱动离子开关和芯片集成离子调节器中所示。其模仿兴奋性和抑制性突触的离子电子信号传输也证明了基于水凝胶的离子电子学在PDMS微芯片上作为向水性神经模拟信息处理器发展的潜力,同时为各种受生物启发的应用开辟了新机会。