离子型突触可塑性模拟:基于水凝胶的离子二极管的化学沉淀和溶解。

Iontronic analog of synaptic plasticity: Hydrogel-based ionic diode with chemical precipitation and dissolution.

机构信息

Department of Chemistry, Seoul National University, Seoul 08826, South Korea.

Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si 16229, South Korea.

出版信息

Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2211442120. doi: 10.1073/pnas.2211442120. Epub 2022 Dec 27.

Abstract

In this study, an aqueous nonlinear synaptic element showing plasticity behavior is developed, which is based on the chemical processes in an ionic diode. The device is simple, fully ionic, and easily configurable, requiring only two terminals-for input and output-similar to biological synapses. The key processes realizing the plasticity features are chemical precipitation and dissolution, which occur at forward- or reverse-biased ionic diode junctions in appropriate reservoir electrolytes. Given that the precipitate acts as a physical barrier in the circuit, the above processes change the diode conductivity, which can be interpreted as adjusting "synaptic weight" of the system. By varying the operating conditions, we first demonstrate the four types of plasticity that can be found in biological system: long-term potentiation/depression and short-term potentiation/depression. The plasticity of the proposed iontronic device has characteristics similar to those of neural synapses. To demonstrate its potential use in comparatively complex information processing, we develop a precipitation-based iontronic synapse (PIS) capable of both potentiation and depression. Finally, we show that the postsynaptic signals from the multiple excitatory or inhibitory PISs can be integrated into the total "dendritic" current, which is a function of time and input history, as in actual hippocampal neural circuits.

摘要

在这项研究中,开发了一种具有可塑性行为的水基非线性突触元件,其基于离子二极管中的化学过程。该器件结构简单,完全离子化,易于配置,仅需两个终端(输入和输出),类似于生物突触。实现可塑性特征的关键过程是化学沉淀和溶解,它们发生在适当的储液电解质中正向或反向偏置的离子二极管结处。由于沉淀物在电路中充当物理障碍,上述过程会改变二极管的电导率,这可以解释为调节系统的“突触权重”。通过改变工作条件,我们首先证明了可以在生物系统中找到四种类型的可塑性:长时程增强/抑制和短时程增强/抑制。所提出的离子电子器件的可塑性与神经突触的特性相似。为了展示其在相对复杂的信息处理中的潜在用途,我们开发了一种基于沉淀的离子电子突触 (PIS),它既能增强又能抑制。最后,我们表明,来自多个兴奋性或抑制性 PIS 的突触后信号可以整合到总“树突”电流中,这是时间和输入历史的函数,就像实际的海马体神经电路一样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c59/9910479/495876ef5304/pnas.2211442120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索