Department of Electrical and Computer Engineering, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States.
Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States.
Langmuir. 2021 Feb 9;37(5):1874-1881. doi: 10.1021/acs.langmuir.0c03319. Epub 2021 Jan 26.
Over the past 3 decades, there has been a vast expansion of research in both tissue engineering and organic electronics. Although the two fields have interacted little, the materials and fabrication technologies which have accompanied the rise of organic electronics offer the potential for innovation and translation if appropriately adapted to pattern biological materials for tissue engineering. In this work, we use two organic electronic materials as adhesion points on a biocompatible poly(-xylylene) surface. The organic electronic materials are precisely deposited vacuum thermal evaporation and organic vapor jet printing, the proven, scalable processes used in the manufacture of organic electronic devices. The small molecular-weight organics prevent the subsequent growth of antifouling polyethylene glycol methacrylate polymer brushes that grow within the interstices between the molecular patches, rendering these background areas both protein and cell resistant. Last, fibronectin attaches to the molecular patches, allowing for the selective adhesion of fibroblasts. The process is simple, reproducible, and promotes a high yield of cell attachment to the targeted sites, demonstrating that biocompatible organic small-molecule materials can pattern cells at the microscale, utilizing techniques widely used in electronic device fabrication.
在过去的 30 年中,组织工程学和有机电子学的研究都有了巨大的扩展。尽管这两个领域相互作用很少,但随着有机电子学的兴起而出现的材料和制造技术,如果适当适应用于组织工程的生物材料的模式,就具有创新和转化的潜力。在这项工作中,我们使用两种有机电子材料作为生物相容性聚(对二甲苯)表面上的附着点。有机电子材料是通过真空热蒸发和有机气相喷射印刷精确沉积的,这是制造有机电子设备所使用的经过验证的、可扩展的工艺。小分子有机物阻止了抗污聚乙二醇甲基丙烯酸酯聚合物刷在后生长,这些聚合物刷在分子片之间的空隙内生长,使这些背景区域既具有抗蛋白性又具有抗细胞性。最后,纤连蛋白附着在分子片上,允许成纤维细胞的选择性附着。该过程简单、可重复,并且能够促进高产量的细胞附着到目标部位,表明生物相容的有机小分子材料可以利用在电子器件制造中广泛使用的技术在微尺度上对细胞进行图案化。