Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain.
Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain.
PLoS One. 2021 Jan 26;16(1):e0245858. doi: 10.1371/journal.pone.0245858. eCollection 2021.
mir-33a and mir-33b are co-transcribed with the SREBF2 and SREBF1 transcription factors, respectively. The main role of SREBF1 is the regulation of genes involved in fatty acid metabolism, while SREBF2 regulates genes participating in cholesterol biosynthesis and uptake. Our objective was to study the expression of both miR-33a and miR-33b, together with their host SREBF genes, in liver, adipose tissue and muscle to better understand the role of miR-33a/b in the lipid metabolism of pigs. In our study, the expression of miR-33a, miR-33b and SREBF2 in liver, adipose tissue, and muscle was studied in 42 BC1_LD (25% Iberian x 75% Landrace backcross) pigs by RT-qPCR. In addition, the expression of in-silico predicted target genes and fatty acid composition traits were correlated with the miR-33a/b expression. We observed different tissue expression patterns for both miRNAs. In adipose tissue and muscle a high correlation between miR-33a and miR-33b expression was found, whereas a lower correlation was observed in liver. The expression analysis of in-silico predicted target-lipid related genes showed negative correlations between miR-33b and CPT1A expression in liver. Conversely, positive correlations between miR-33a and PPARGC1A and USF1 gene expression in liver were observed. Lastly, positive and negative correlations between miR-33a/b expression and saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) content, respectively, were identified. Overall, our results suggested that both miRNAs are differentially regulated and have distinct functions in liver, in contrast to muscle and adipose tissue. Furthermore, the correlations between miR-33a/b expression both with the expression of in-silico predicted target-lipid related genes and with fatty acid composition, opens new avenues to explore the role of miR33a/b in the regulation of lipid metabolism.
miR-33a 和 miR-33b 分别与 SREBF2 和 SREBF1 转录因子共同转录。SREBF1 的主要作用是调节参与脂肪酸代谢的基因,而 SREBF2 则调节参与胆固醇生物合成和摄取的基因。我们的目标是研究 miR-33a 和 miR-33b 及其宿主 SREBF 基因在肝脏、脂肪组织和肌肉中的表达,以更好地了解 miR-33a/b 在猪脂质代谢中的作用。在我们的研究中,通过 RT-qPCR 研究了 42 头 BC1_LD(25%伊比利亚 x 75%长白猪的回交后代)猪肝脏、脂肪组织和肌肉中 miR-33a、miR-33b 和 SREBF2 的表达。此外,还对预测的靶基因和脂肪酸组成性状与 miR-33a/b 表达进行了相关性分析。我们观察到这两种 miRNA 在不同组织中的表达模式不同。在脂肪组织和肌肉中,miR-33a 和 miR-33b 的表达高度相关,而在肝脏中相关性较低。对预测的靶基因和脂质相关基因的表达分析表明,在肝脏中,miR-33b 与 CPT1A 的表达呈负相关。相反,在肝脏中观察到 miR-33a 与 PPARGC1A 和 USF1 基因表达呈正相关。最后,鉴定出 miR-33a/b 表达与饱和脂肪酸(SFA)和多不饱和脂肪酸(PUFA)含量之间存在正相关和负相关。总的来说,我们的结果表明,这两种 miRNA 在肝脏中的调控方式不同,具有不同的功能,与肌肉和脂肪组织不同。此外,miR-33a/b 表达与预测的靶基因和脂质相关基因表达以及脂肪酸组成之间的相关性,为探索 miR33a/b 在脂质代谢调节中的作用开辟了新的途径。