Suppr超能文献

使用光子计数探测器和一步法能谱 CT 图像重建技术解决 CT 金属伪影问题。

Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.

机构信息

Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Department of Statistics, University of Chicago, Chicago, Illinois, USA.

出版信息

Med Phys. 2022 May;49(5):3021-3040. doi: 10.1002/mp.15621. Epub 2022 Apr 5.

Abstract

PURPOSE

The constrained one-step spectral CT image reconstruction (cOSSCIR) algorithm with a nonconvex alternating direction method of multipliers optimizer is proposed for addressing computed tomography (CT) metal artifacts caused by beam hardening, noise, and photon starvation. The quantitative performance of cOSSCIR is investigated through a series of photon-counting CT simulations.

METHODS

cOSSCIR directly estimates basis material maps from photon-counting data using a physics-based forward model that accounts for beam hardening. The cOSSCIR optimization framework places constraints on the basis maps, which we hypothesize will stabilize the decomposition and reduce streaks caused by noise and photon starvation. Another advantage of cOSSCIR is that the spectral data need not be registered, so that a ray can be used even if some energy window measurements are unavailable. Photon-counting CT acquisitions of a virtual pelvic phantom with low-contrast soft tissue texture and bilateral hip prostheses were simulated. Bone and water basis maps were estimated using the cOSSCIR algorithm and combined to form a virtual monoenergetic image for the evaluation of metal artifacts. The cOSSCIR images were compared to a "two-step" decomposition approach that first estimated basis sinograms using a maximum likelihood algorithm and then reconstructed basis maps using an iterative total variation constrained least-squares optimization (MLE+TV ). Images were also compared to a nonspectral TV reconstruction of the total number of counts detected for each ray with and without normalized metal artifact reduction (NMAR) applied. The simulated metal density was increased to investigate the effects of increasing photon starvation. The quantitative error and standard deviation in regions of the phantom were compared across the investigated algorithms. The ability of cOSSCIR to reproduce the soft-tissue texture, while reducing metal artifacts, was quantitatively evaluated.

RESULTS

Noiseless simulations demonstrated the convergence of the cOSSCIR and MLE+TV algorithms to the correct basis maps in the presence of beam-hardening effects. When noise was simulated, cOSSCIR demonstrated a quantitative error of -1 HU, compared to 2 HU error for the MLE+TV algorithm and -154 HU error for the nonspectral TV +NMAR algorithm. For the cOSSCIR algorithm, the standard deviation in the central iodine region of interest was 20 HU, compared to 299 HU for the MLE+TV algorithm, 41 HU for the MLE+TV +Mask algorithm that excluded rays through metal, and 55 HU for the nonspectral TV +NMAR algorithm. Increasing levels of photon starvation did not impact the bias or standard deviation of the cOSSCIR images. cOSSCIR was able to reproduce the soft-tissue texture when an appropriate regularization constraint value was selected.

CONCLUSIONS

By directly inverting photon-counting CT data into basis maps using an accurate physics-based forward model and a constrained optimization algorithm, cOSSCIR avoids metal artifacts due to beam hardening, noise, and photon starvation. The cOSSCIR algorithm demonstrated improved stability and accuracy compared to a two-step method of decomposition followed by reconstruction.

摘要

目的

提出了一种基于约束一步谱 CT 图像重建(cOSSCIR)算法和非凸交替方向乘子法优化器,用于解决由于束硬化、噪声和光子饥饿引起的 CT 金属伪影问题。通过一系列光子计数 CT 模拟,研究了 cOSSCIR 的定量性能。

方法

cOSSCIR 直接从光子计数数据使用基于物理的正向模型来估计基材料图,该模型考虑了束硬化。cOSSCIR 优化框架对基图施加约束,我们假设这将稳定分解并减少噪声和光子饥饿引起的条纹。cOSSCIR 的另一个优点是不需要对光谱数据进行配准,因此即使某些能量窗口的测量不可用,也可以使用一条射线。对具有低对比度软组织纹理和双侧髋关节假体的虚拟骨盆模型进行了光子计数 CT 模拟。使用 cOSSCIR 算法估计骨和水基图,并将其组合以形成虚拟单能图像,用于评估金属伪影。将 cOSSCIR 图像与“两步”分解方法进行比较,该方法首先使用最大似然算法估计基正弦图,然后使用迭代全变分约束最小二乘优化(MLE+TV)重建基图。还将图像与未应用归一化金属伪影降低(NMAR)的情况下为每条射线检测到的总计数进行非光谱 TV 重建进行比较。增加模拟金属密度以研究增加光子饥饿的影响。比较了不同算法在体模中的感兴趣区域的定量误差和标准差。对 cOSSCIR 减少金属伪影的同时重现软组织纹理的能力进行了定量评估。

结果

无噪声模拟表明,在存在束硬化效应的情况下,cOSSCIR 和 MLE+TV 算法都可以收敛到正确的基图。当模拟噪声时,cOSSCIR 的定量误差为-1 HU,而 MLE+TV 算法的误差为 2 HU,非光谱 TV+NMAR 算法的误差为-154 HU。对于 cOSSCIR 算法,中央碘 ROI 的标准差为 20 HU,而 MLE+TV 算法为 299 HU,排除金属射线的 MLE+TV+Mask 算法为 41 HU,非光谱 TV+NMAR 算法为 55 HU。增加光子饥饿程度不会影响 cOSSCIR 图像的偏差或标准差。当选择适当的正则化约束值时,cOSSCIR 能够再现软组织纹理。

结论

通过使用准确的基于物理的正向模型和约束优化算法直接将光子计数 CT 数据反演为基图,cOSSCIR 避免了由于束硬化、噪声和光子饥饿引起的金属伪影。与两步分解后重建的方法相比,cOSSCIR 算法具有更好的稳定性和准确性。

相似文献

1
Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.
Med Phys. 2022 May;49(5):3021-3040. doi: 10.1002/mp.15621. Epub 2022 Apr 5.
2
4
Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT.
Med Phys. 2021 Jul;48(7):3572-3582. doi: 10.1002/mp.14931. Epub 2021 May 28.
6
A Spectral CT Method to Directly Estimate Basis Material Maps From Experimental Photon-Counting Data.
IEEE Trans Med Imaging. 2017 Sep;36(9):1808-1819. doi: 10.1109/TMI.2017.2696338. Epub 2017 Apr 24.
7
Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography.
PLoS One. 2021 Mar 5;16(3):e0247355. doi: 10.1371/journal.pone.0247355. eCollection 2021.
8
Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique.
PLoS One. 2015 May 8;10(5):e0124831. doi: 10.1371/journal.pone.0124831. eCollection 2015.
9
Metal Artifact Reduction in Photon-Counting Detector CT: Quantitative Evaluation of Artifact Reduction Techniques.
Invest Radiol. 2024 Jun 1;59(6):442-449. doi: 10.1097/RLI.0000000000001036. Epub 2023 Oct 9.
10
Photon-Counting Computed Tomography for Vascular Imaging of the Head and Neck: First In Vivo Human Results.
Invest Radiol. 2018 Mar;53(3):135-142. doi: 10.1097/RLI.0000000000000418.

引用本文的文献

1
Assessment of material identification and quantification in the presence of metals using spectral photon counting CT.
PLoS One. 2024 Sep 13;19(9):e0308658. doi: 10.1371/journal.pone.0308658. eCollection 2024.
3
Approaches, advantages, and challenges to photon counting detector and multi-energy CT.
Abdom Radiol (NY). 2024 Sep;49(9):3251-3260. doi: 10.1007/s00261-024-04357-x. Epub 2024 May 15.
6
Simultaneous Activity and Attenuation Estimation in TOF-PET With TV-Constrained Nonconvex Optimization.
IEEE Trans Med Imaging. 2024 Jun;43(6):2347-2357. doi: 10.1109/TMI.2024.3365302. Epub 2024 Jun 5.
8
9
Direct Multi-Material Reconstruction via Iterative Proximal Adaptive Descent for Spectral CT Imaging.
Bioengineering (Basel). 2023 Apr 12;10(4):470. doi: 10.3390/bioengineering10040470.

本文引用的文献

2
A signal detection model for quantifying overregularization in nonlinear image reconstruction.
Med Phys. 2021 Oct;48(10):6312-6323. doi: 10.1002/mp.14703. Epub 2021 Jun 25.
3
4
Experimental study of photon-counting CT neural network material decomposition under conditions of pulse pileup.
J Med Imaging (Bellingham). 2021 Jan;8(1):013502. doi: 10.1117/1.JMI.8.1.013502. Epub 2021 Jan 9.
5
Non-convex primal-dual algorithm for image reconstruction in spectral CT.
Comput Med Imaging Graph. 2021 Jan;87:101821. doi: 10.1016/j.compmedimag.2020.101821. Epub 2020 Dec 8.
6
Deep Sinogram Completion With Image Prior for Metal Artifact Reduction in CT Images.
IEEE Trans Med Imaging. 2021 Jan;40(1):228-238. doi: 10.1109/TMI.2020.3025064. Epub 2020 Dec 29.
8
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction.
IEEE Trans Med Imaging. 2020 Mar;39(3):634-643. doi: 10.1109/TMI.2019.2933425. Epub 2019 Aug 5.
9
Estimating the spectrum in computed tomography via Kullback-Leibler divergence constrained optimization.
Med Phys. 2019 Jan;46(1):81-92. doi: 10.1002/mp.13257. Epub 2018 Dec 13.
10
Metal artifact reduction techniques in musculoskeletal CT-imaging.
Eur J Radiol. 2018 Oct;107:60-69. doi: 10.1016/j.ejrad.2018.08.010. Epub 2018 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验