Suppr超能文献

生活方式风险评分:在基因与生活方式相互作用的荟萃分析中处理个体生活方式组成部分的缺失数据

Lifestyle Risk Score: handling missingness of individual lifestyle components in meta-analysis of gene-by-lifestyle interactions.

作者信息

Xu Hanfei, Schwander Karen, Brown Michael R, Wang Wenyi, Waken R J, Boerwinkle Eric, Cupples L Adrienne, de las Fuentes Lisa, van Heemst Diana, Osazuwa-Peters Oyomoare, de Vries Paul S, van Dijk Ko Willems, Sung Yun Ju, Zhang Xiaoyu, Morrison Alanna C, Rao D C, Noordam Raymond, Liu Ching-Ti

机构信息

Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.

Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Eur J Hum Genet. 2021 May;29(5):839-850. doi: 10.1038/s41431-021-00808-x. Epub 2021 Jan 26.

Abstract

Recent studies consider lifestyle risk score (LRS), an aggregation of multiple lifestyle exposures, in identifying association of gene-lifestyle interaction with disease traits. However, not all cohorts have data on all lifestyle factors, leading to increased heterogeneity in the environmental exposure in collaborative meta-analyses. We compared and evaluated four approaches (Naïve, Safe, Complete and Moderator Approaches) to handle the missingness in LRS-stratified meta-analyses under various scenarios. Compared to "benchmark" results with all lifestyle factors available for all cohorts, the Complete Approach, which included only cohorts with all lifestyle components, was underpowered due to lower sample size, and the Naïve Approach, which utilized all available data and ignored the missingness, was slightly inflated. The Safe Approach, which used all data in LRS-exposed group and only included cohorts with all lifestyle factors available in the LRS-unexposed group, and the Moderator Approach, which handled missingness via moderator meta-regression, were both slightly conservative and yielded almost identical p values. We also evaluated the performance of the Safe Approach under different scenarios. We observed that the larger the proportion of cohorts without missingness included, the more accurate the results compared to "benchmark" results. In conclusion, we generally recommend the Safe Approach, a straightforward and non-inflated approach, to handle heterogeneity among cohorts in the LRS based genome-wide interaction meta-analyses.

摘要

近期研究在确定基因-生活方式相互作用与疾病特征的关联时,考虑了生活方式风险评分(LRS),它是多种生活方式暴露因素的汇总。然而,并非所有队列都有关于所有生活方式因素的数据,这导致在合作的荟萃分析中环境暴露的异质性增加。我们比较并评估了四种方法(朴素法、安全法、完全法和调节法),以处理在各种情况下LRS分层荟萃分析中的数据缺失问题。与所有队列都有所有生活方式因素的“基准”结果相比,完全法(仅包括具有所有生活方式成分的队列)由于样本量较小而效能不足,而朴素法(利用所有可用数据并忽略缺失值)的结果略有夸大。安全法(在LRS暴露组中使用所有数据,在LRS未暴露组中仅纳入具有所有生活方式因素的队列)和调节法(通过调节元回归处理缺失值)都略显保守,且产生的p值几乎相同。我们还评估了安全法在不同情况下的性能。我们观察到,纳入无缺失值队列的比例越大,与“基准”结果相比,结果就越准确。总之,我们一般推荐安全法,这是一种直接且不夸大的方法,用于处理基于LRS的全基因组相互作用荟萃分析中队列间的异质性。

相似文献

1
Lifestyle Risk Score: handling missingness of individual lifestyle components in meta-analysis of gene-by-lifestyle interactions.
Eur J Hum Genet. 2021 May;29(5):839-850. doi: 10.1038/s41431-021-00808-x. Epub 2021 Jan 26.
6
Identifying blood pressure loci whose effects are modulated by multiple lifestyle exposures.
Genet Epidemiol. 2020 Sep;44(6):629-641. doi: 10.1002/gepi.22292. Epub 2020 Mar 29.
7
Associations of Lifestyle and Genetic Risks with Obesity and Related Chronic Diseases in the UK Biobank: A Prospective Cohort Study.
Am J Clin Nutr. 2024 Jun;119(6):1514-1522. doi: 10.1016/j.ajcnut.2024.04.025. Epub 2024 Apr 25.
8
Heuristic Approach Uncovering Biological Significance of Gene-Lifestyle Interactions in Cardiometabolic Traits.
Lifestyle Genom. 2023;16(1):106-112. doi: 10.1159/000531181. Epub 2023 Jun 20.
9
Analysis of the Interaction between Polygenic Risk Score and Calorie Intake in Obesity in the Korean Population.
Lifestyle Genom. 2021;14(1):20-29. doi: 10.1159/000511333. Epub 2020 Dec 10.
10
Polygenic Interactions With Environmental Exposures in Blood Pressure Regulation: The HUNT Study.
J Am Heart Assoc. 2024 Oct;13(19):e034612. doi: 10.1161/JAHA.123.034612. Epub 2024 Sep 18.

引用本文的文献

1
Associations Between Oral Microbiota Pathogens and Elevated Depressive and Anxiety Symptoms in Men.
Depress Anxiety. 2025 Jul 21;2025:9961595. doi: 10.1155/da/9961595. eCollection 2025.
2
Advancements in deep learning for early diagnosis of Alzheimer's disease using multimodal neuroimaging: challenges and future directions.
Front Neuroinform. 2025 May 2;19:1557177. doi: 10.3389/fninf.2025.1557177. eCollection 2025.
3
Gene-environment interactions in human health.
Nat Rev Genet. 2024 Nov;25(11):768-784. doi: 10.1038/s41576-024-00731-z. Epub 2024 May 28.

本文引用的文献

1
Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose.
PLoS One. 2020 May 7;15(5):e0230815. doi: 10.1371/journal.pone.0230815. eCollection 2020.
2
Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.
Mol Psychiatry. 2021 Jun;26(6):2111-2125. doi: 10.1038/s41380-020-0719-3. Epub 2020 May 5.
3
Identifying blood pressure loci whose effects are modulated by multiple lifestyle exposures.
Genet Epidemiol. 2020 Sep;44(6):629-641. doi: 10.1002/gepi.22292. Epub 2020 Mar 29.
6
Inferring the Nature of Missing Heritability in Human Traits Using Data from the GWAS Catalog.
Genetics. 2019 Jul;212(3):891-904. doi: 10.1534/genetics.119.302077. Epub 2019 May 13.
8
Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.
Am J Epidemiol. 2019 Jun 1;188(6):1033-1054. doi: 10.1093/aje/kwz005.
9
Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.
Nat Commun. 2019 Jan 22;10(1):376. doi: 10.1038/s41467-018-08008-w.
10
Genetic Risk Score, Combined Lifestyle Factors and Risk of Colorectal Cancer.
Cancer Res Treat. 2019 Jul;51(3):1033-1040. doi: 10.4143/crt.2018.447. Epub 2018 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验