文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

环保且简便的二氢杨梅素介导银纳米粒子的合成:抗氧化、抗菌和抗癌。

Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.

机构信息

Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China.

College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China.

出版信息

Int J Nanomedicine. 2021 Jan 19;16:481-492. doi: 10.2147/IJN.S283677. eCollection 2021.


DOI:10.2147/IJN.S283677
PMID:33500618
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7826068/
Abstract

BACKGROUND: Dihydromyricetin (DMY), a natural flavonoid, has reportedly antibacterial, antioxidant, anticancer and other properties. In the present study, DMY was used as a reducing agent and stabilizer to synthesize silver nanoparticles (AgNPs), and the optimal conditions for its synthesis were studied. The DMY-AgNPs were investigated for their DPPH scavenging properties and their potential against human pathogenic and food-borne bacteria viz. (. In addition, DMY-AgNPs also showed excellent inhibitory effects on cancer Hela, HepG2 and MDA-MB-231 cell lines. METHODS: The dihydromyricetin-mediated AgNPs (DMY-AgNPs) were characterized by ultraviolet-visible spectrophotometer (UV-Vis spectra), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). Antioxidant activity of DMY-AgNPs was determined by 1.1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. The antibacterial activity was determined by 96-well plate (AGAR) gradient dilution, while anticancer potential was determined by MTT assay. RESULTS: The results showed that the dispersion of AgNPs had the maximum UV-visible absorption at about 410 nm. The synthesized nanoparticles were almost spherical. FTIR was used to identify functional groups that may lead to the transformation of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with biological molecules in the extraction solution. The biosynthesized DMY-AgNPs exhibited good antioxidant properties, at various concentrations (0.01-0.1mg/mL), the free radical scavenging rate was about 56-92%. Furthermore, DMY-AgNPs possessed good antibacterial properties against ( at room temperature. The minimum inhibitory concentrations (MIC) were 10 g/L, and 10 g/L, respectively. The bioactivity of DMY-mediated AgNPs was studied using MTT assay against Hela, HepG2 and MDA-MB-231 cancer cell lines, and all showed good inhibitory effects. CONCLUSION: The present study provides a green approach for the synthesis of DMY-AgNPs which exhibited stronger antioxidant, antibacterial and anticancer properties compared to the dihydromyricetin. DMY-AgNPs can serve as an economical, efficient, and effective antimicrobial material for its applications in food and pharmaceutical fields.

摘要

背景:二氢杨梅素(DMY)是一种天然黄酮类化合物,具有抗菌、抗氧化、抗癌等特性。本研究以 DMY 为还原剂和稳定剂合成了银纳米粒子(AgNPs),并对其合成的最佳条件进行了研究。研究了 DMY-AgNPs 的 DPPH 清除能力及其对人病原和食源性病原体的潜在作用,包括金黄色葡萄球菌( 。此外,DMY-AgNPs 对宫颈癌 Hela、肝癌 HepG2 和乳腺癌 MDA-MB-231 细胞系也表现出优异的抑制作用。 方法:用紫外-可见分光光度计(UV-Vis 光谱)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)、X 射线光电子能谱(XPS)和 X 射线粉末衍射(XRD)对二氢杨梅素介导的银纳米粒子(DMY-AgNPs)进行了表征。通过 1.1-二苯基-2-苦基肼基(DPPH)清除实验测定 DMY-AgNPs 的抗氧化活性。通过 96 孔板(AGAR)梯度稀释法测定抗菌活性,通过 MTT 法测定抗癌潜力。 结果:结果表明,AgNPs 的分散体在约 410nm 处具有最大的紫外-可见吸收。合成的纳米粒子几乎呈球形。FTIR 用于鉴定可能导致金属离子转化为纳米粒子的功能团。结果表明,制备的 AgNPs 被提取溶液中的生物分子包裹。生物合成的 DMY-AgNPs 表现出良好的抗氧化性能,在不同浓度(0.01-0.1mg/mL)下,自由基清除率约为 56-92%。此外,DMY-AgNPs 对 (在室温下具有良好的抗菌性能。最小抑菌浓度(MIC)分别为 10g/L 和 10g/L。采用 MTT 法研究了 DMY 介导的 AgNPs 对 Hela、HepG2 和 MDA-MB-231 癌细胞系的生物活性,均表现出良好的抑制作用。 结论:本研究提供了一种绿色的方法来合成 DMY-AgNPs,与二氢杨梅素相比,DMY-AgNPs 具有更强的抗氧化、抗菌和抗癌特性。DMY-AgNPs 可作为一种经济、高效、有效的抗菌材料,应用于食品和制药领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/4538e9a27497/IJN-16-481-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/8bfd2f6e23dd/IJN-16-481-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/89ef689755c3/IJN-16-481-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/e94ce737eca0/IJN-16-481-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/afb58c801c99/IJN-16-481-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/03148e403482/IJN-16-481-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/876d9fa61f2a/IJN-16-481-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/cc44718d6213/IJN-16-481-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/4538e9a27497/IJN-16-481-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/8bfd2f6e23dd/IJN-16-481-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/89ef689755c3/IJN-16-481-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/e94ce737eca0/IJN-16-481-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/afb58c801c99/IJN-16-481-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/03148e403482/IJN-16-481-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/876d9fa61f2a/IJN-16-481-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/cc44718d6213/IJN-16-481-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a348/7826068/4538e9a27497/IJN-16-481-g0008.jpg

相似文献

[1]
Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.

Int J Nanomedicine. 2021

[2]
Characterization of Silver Nanoparticles Synthesized by Leaves of Thunb.

Int J Nanomedicine. 2022

[3]
Phytosynthesis of Silver Nanoparticles Using Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities.

Int J Nanomedicine. 2021

[4]
Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties.

Curr Pharm Biotechnol. 2019

[5]
Green Synthesis of Dracocephalum kotschyi-Coated Silver Nanoparticles: Antimicrobial, Antioxidant, and Anticancer Potentials.

Med Sci Monit. 2024-10-3

[6]
Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

Int J Nanomedicine. 2016-4-29

[7]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

[8]
Biosynthesis of Silver Nanoparticles Using Culture Supernatant of sp. ARY1 and Their Antibacterial Activity.

Int J Nanomedicine. 2020-10-28

[9]
Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities.

Int J Biol Macromol. 2024-1

[10]
Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of (L.) Lam.

Int J Nanomedicine. 2019-7-2

引用本文的文献

[1]
Does dihydromyricetin protect the kidney following ischemia-reperfusion injury in male rats?

Physiol Rep. 2025-6

[2]
Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection.

PeerJ. 2024-12-23

[3]
Silver Nanoparticles Encapped by Dihydromyricetin: Optimization of Green Synthesis, Characterization, Toxicity, and Anti-MRSA Infection Activities for Zebrafish ().

Int J Mol Sci. 2024-5-11

[4]
Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine.

Nanomaterials (Basel). 2023-5-2

[5]
Synthesis of Silver Nano Particles Using Myricetin and the In-Vitro Assessment of Anti-Colorectal Cancer Activity: In-Silico Integration.

Int J Mol Sci. 2022-9-20

[6]
Antibacterial, Antifungal, and Antioxidant Activities of Silver Nanoparticles Biosynthesized from Linn.

Antioxidants (Basel). 2021-12-7

本文引用的文献

[1]
The Efficacy of AgNO3 Nanoparticles Alone and Conjugated with Imipenem for Combating Extensively Drug-Resistant .

Int J Nanomedicine. 2020-9-21

[2]
The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs.

Int J Nanomedicine. 2020-8-24

[3]
Inhibitory effect of dihydromyricetin on the proliferation of JAR cells and its mechanism of action.

Oncol Lett. 2020-7

[4]
Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation.

Microbes Infect. 2020

[5]
A Potent and Safer Anticancer and Antibacterial -Based Green Synthesized Silver Nanoparticle.

Int J Nanomedicine. 2020-5-28

[6]
Synthesis of Dihydromyricetin Coated Multi-Walled Carbon Nanotubes (MWCNTs) and Antibacterial Activities.

J Nanosci Nanotechnol. 2020-10-1

[7]
Dihydromyricetin increases endothelial nitric oxide production and inhibits atherosclerosis through microRNA-21 in apolipoprotein E-deficient mice.

J Cell Mol Med. 2020-5

[8]
Modulation of SIRT1-mediated signaling cascades in the liver contributes to the amelioration of nonalcoholic steatohepatitis in high fat fed middle-aged LDL receptor knockout mice by dihydromyricetin.

Biochem Pharmacol. 2020-3-23

[9]
Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy.

Cardiovasc Drugs Ther. 2020-6

[10]
The role of myricetin from Rhodomyrtus tomentosa (Aiton) Hassk fruits on downregulation of FcɛRI-mediated mast cell activation.

J Food Biochem. 2020-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索