Suppr超能文献

促进全球数据共享:突出研究数据联盟新冠疫情工作组的建议

Fostering global data sharing: highlighting the recommendations of the Research Data Alliance COVID-19 working group.

作者信息

Austin Claire C, Bernier Alexander, Bezuidenhout Louise, Bicarregui Juan, Biro Timea, Cambon-Thomsen Anne, Carroll Stephanie Russo, Cournia Zoe, Dabrowski Piotr Wojciech, Diallo Gayo, Duflot Thomas, Garcia Leyla, Gesing Sandra, Gonzalez-Beltran Alejandra, Gururaj Anupama, Harrower Natalie, Lin Dawei, Medeiros Claudia, Méndez Eva, Meyers Natalie, Mietchen Daniel, Nagrani Rajini, Nilsonne Gustav, Parker Simon, Pickering Brian, Pienta Amy, Polydoratou Panayiota, Psomopoulos Fotis, Rennes Stephanie, Rowe Robyn, Sansone Susanna-Assunta, Shanahan Hugh, Sitz Lina, Stocks Joanne, Tovani-Palone Marcos Roberto, Uhlmansiek Mary

机构信息

Environment and Climate Change Canada, 351 boul. St-Joseph, Gatineau, Quebec, K1A 0H3, Canada.

Centre of Genomics and Policy, McGill University, 740, avenue Dr. Penfield, suite 5200, Montreal, Quebec, Canada.

出版信息

Wellcome Open Res. 2021 May 26;5:267. doi: 10.12688/wellcomeopenres.16378.2. eCollection 2020.

Abstract

The systemic challenges of the COVID-19 pandemic require cross-disciplinary collaboration in a global and timely fashion. Such collaboration needs open research practices and the sharing of research outputs, such as data and code, thereby facilitating research and research reproducibility and timely collaboration beyond borders. The Research Data Alliance COVID-19 Working Group recently published a set of recommendations and guidelines on data sharing and related best practices for COVID-19 research. These guidelines include recommendations for clinicians, researchers, policy- and decision-makers, funders, publishers, public health experts, disaster preparedness and response experts, infrastructure providers from the perspective of different domains (Clinical Medicine, Omics, Epidemiology, Social Sciences, Community Participation, Indigenous Peoples, Research Software, Legal and Ethical Considerations), and other potential users. These guidelines include recommendations for researchers, policymakers, funders, publishers and infrastructure providers from the perspective of different domains (Clinical Medicine, Omics, Epidemiology, Social Sciences, Community Participation, Indigenous Peoples, Research Software, Legal and Ethical Considerations). Several overarching themes have emerged from this document such as the need to balance the creation of data adherent to FAIR principles (findable, accessible, interoperable and reusable), with the need for quick data release; the use of trustworthy research data repositories; the use of well-annotated data with meaningful metadata; and practices of documenting methods and software. The resulting document marks an unprecedented cross-disciplinary, cross-sectoral, and cross-jurisdictional effort authored by over 160 experts from around the globe. This letter summarises key points of the Recommendations and Guidelines, highlights the relevant findings, shines a spotlight on the process, and suggests how these developments can be leveraged by the wider scientific community.

摘要

新冠疫情带来的系统性挑战需要全球范围内及时开展跨学科合作。这种合作需要开放的研究实践以及研究成果(如数据和代码)的共享,从而促进研究及研究的可重复性,并实现超越国界的及时合作。研究数据联盟新冠疫情工作组最近发布了一套关于新冠疫情研究数据共享及相关最佳实践的建议和指南。这些指南从不同领域(临床医学、组学、流行病学、社会科学、社区参与、原住民、研究软件、法律和伦理考量)的角度,为临床医生、研究人员、政策和决策者、资助者、出版商、公共卫生专家、灾难防范和应对专家、基础设施提供者以及其他潜在用户提供了建议。这些指南从不同领域(临床医学、组学、流行病学、社会科学、社区参与、原住民、研究软件、法律和伦理考量)的角度,为研究人员、政策制定者、资助者、出版商和基础设施提供者提供了建议。该文件中出现了几个总体主题,比如需要在创建符合FAIR原则(可查找、可访问、可互操作和可重用)的数据与快速发布数据之间取得平衡;使用可信的研究数据存储库;使用带有有意义元数据的注释良好的数据;以及记录方法和软件的实践。这份文件是来自全球160多位专家前所未有的跨学科、跨部门和跨辖区的努力成果。这封信总结了《建议和指南》的要点,突出了相关发现,聚焦了这一过程,并提出了广大科学界如何利用这些进展的建议。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9

引用本文的文献

8
The Vaccine World of COVID-19: India's Contribution.新冠疫情下的疫苗世界:印度的贡献
Vaccines (Basel). 2022 Nov 17;10(11):1943. doi: 10.3390/vaccines10111943.
9
Community Readiness for Local COVID-19 Management.社区应对本地新冠疫情管理的准备情况
Front Res Metr Anal. 2021 Jan 15;5:602200. doi: 10.3389/frma.2020.602200. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验