Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA.
Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
Med Phys. 2021 Mar;48(3):1079-1088. doi: 10.1002/mp.14688. Epub 2021 Jan 26.
A clinical-prototype, dedicated, cone-beam breast computed tomography (CBBCT) system with offset detector is undergoing clinical evaluation at our institution. This study is to estimate the normalized glandular dose coefficients ( ) that provide air kerma-to-mean glandular dose conversion factors using Monte Carlo simulations.
The clinical prototype CBBCT system uses 49 kV x-ray spectrum with 1.39 mm 1st half-value layer thickness. Monte Carlo simulations (GATE, version 8) were performed with semi-ellipsoidal, homogeneous breasts of various fibroglandular weight fractions ( , chest wall diameters ( cm), and chest wall to nipple length ( ), aligned with the axis of rotation (AOR) located at 65 cm from the focal spot to determine the . Three geometries were considered - -cm detector with no offset that served as reference and corresponds to a clinical CBBCT system, -cm detector with 5 cm offset, and a -cm detector with 10 cm offset.
For 5 cm lateral offset, the ranged mGy/mGy and reduction in with respect to reference geometry was observed only for 18 cm ( ) and 20 cm ( ) diameter breasts. For the 10 cm lateral offset, the ranged mGy/mGy and reduction in was observed for all breast diameters. The reduction in was , , , , and for 8, 10, 14, 18, and 20 cm diameter breasts, respectively. For a given breast diameter, the reduction in with offset-detector geometries was not dependent on . Numerical fits of were generated for each geometry.
The and the numerical fit, would be of benefit for current CBBCT systems using the reference geometry and for future generations using offset-detector geometry. There exists a potential for radiation dose reduction with offset-detector geometry, provided the same technique factors as the reference geometry are used, and the image quality is clinically acceptable.
本研究旨在通过蒙特卡罗模拟估算归一化腺体剂量系数( ),该系数可提供空气比释动能与平均腺体剂量的转换因子。目前,我们机构正在对一款配备偏移探测器的临床原型专用锥形束乳腺 CT(CBBCT)系统进行临床评估。
临床原型 CBBCT 系统采用 49kV X 射线光谱,1.39mm 半值层厚度。使用半椭圆、各向同性、不同纤维腺体重量比( )、胸壁直径( 厘米)和胸壁至乳头长度( )的乳房,与旋转轴(AOR)对齐,位于焦点 65 厘米处,以确定 。考虑了三种几何形状 - 无偏移的 -cm 探测器作为参考,与临床 CBBCT 系统相对应;5cm 偏移的 -cm 探测器;以及 10cm 偏移的 -cm 探测器。
对于 5cm 的侧向偏移,仅在 18cm( )和 20cm( )直径的乳房中观察到 与参考几何形状相比, 范围为 mGy/mGy,并且 降低。对于 10cm 的侧向偏移,所有乳房直径都观察到 范围为 mGy/mGy, 降低。 降低幅度分别为 、 、 、 和 ,对应于 8、10、14、18 和 20cm 直径的乳房。对于给定的乳房直径,偏移探测器几何形状的 降低与 无关。为每个几何形状生成了 的数值拟合。
对于使用参考几何形状的当前 CBBCT 系统和使用偏移探测器几何形状的未来系统, 和数值拟合 将是有益的。只要使用与参考几何形状相同的技术因素,并且图像质量在临床可接受的范围内,使用偏移探测器几何形状就有可能降低辐射剂量。