Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
Sci Rep. 2020 Dec 3;10(1):21111. doi: 10.1038/s41598-020-77923-0.
To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully sampled FDK reference yields superior performance, quantitatively and visually, compared to conventional compressed sensing methods and state-of-the-art deep learning based methods. The proposed deep learning driven framework can potentially enable low dose breast CT imaging.
为了开发和研究一种在专用乳腺 CT 中使用稀疏视图采集来降低辐射剂量的深度学习方法,我们提出了一种结合三维稀疏视图锥形束采集和多切片残差密集网络(MS-RDN)重建的框架。从 34 名女性中采集的投影数据集(300 个视图,全扫描)使用 FDK 算法进行重建,并作为参考。稀疏视图(100 个视图,全扫描)投影数据使用 FDK 算法进行重建。所提出的 MS-RDN 使用稀疏视图和参考 FDK 重建分别作为输入和标签。与传统的压缩感知方法和基于最先进的深度学习的方法相比,我们的 MS-RDN 在使用完全采样的 FDK 参考方面进行评估,在定量和视觉上都表现出了优越的性能。所提出的深度学习驱动框架可能能够实现低剂量乳腺 CT 成像。