Department of Neurology, Kepler University Hospital, Linz, Austria.
Faculty of Medicine, Johannes Kepler University, Linz, Austria.
Clin Neuroradiol. 2024 Jun;34(2):351-360. doi: 10.1007/s00062-023-01372-1. Epub 2023 Dec 29.
Perfusion-weighted (PWI) magnetic resonance imaging (MRI) and O‑(2-[18F]fluoroethyl-)-l-tyrosine ([18F]FET) positron emission tomography (PET) are both useful for discrimination of progressive disease (PD) from radiation necrosis (RN) in patients with gliomas. Previous literature showed that the combined use of FET-PET and MRI-PWI is advantageous; hhowever the increased diagnostic performances were only modest compared to the use of a single modality. Hence, the goal of this study was to further explore the benefit of combining MRI-PWI and [18F]FET-PET for differentiation of PD from RN. Secondarily, we evaluated the usefulness of cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) as previous studies mainly examined cerebral blood volume (CBV).
In this single center study, we retrospectively identified patients with WHO grades II-IV gliomas with suspected tumor recurrence, presenting with ambiguous findings on structural MRI. For differentiation of PD from RN we used both MRI-PWI and [18F]FET-PET. Dynamic susceptibility contrast MRI-PWI provided normalized parameters derived from perfusion maps (r(relative)CBV, rCBF, rMTT, rTTP). Static [18F]FET-PET parameters including mean and maximum tumor to brain ratios (TBR, TBR) were calculated. Based on histopathology and radioclinical follow-up we diagnosed PD in 27 and RN in 10 cases. Using the receiver operating characteristic (ROC) analysis, area under the curve (AUC) values were calculated for single and multiparametric models. The performances of single and multiparametric approaches were assessed with analysis of variance and cross-validation.
After application of inclusion and exclusion criteria, we included 37 patients in this study. Regarding the in-sample based approach, in single parameter analysis rTBR (AUC = 0.91, p < 0.001), rTBR (AUC = 0.89, p < 0.001), rTTP (AUC = 0.87, p < 0.001) and rCBV (AUC = 0.84, p < 0.001) were efficacious for discrimination of PD from RN. The rCBF and rMTT did not reach statistical significance. A classification model consisting of TBR, rCBV and rTTP achieved an AUC of 0.98 (p < 0.001), outperforming the use of rTBR alone, which was the single parametric approach with the highest AUC. Analysis of variance confirmed the superiority of the multiparametric approach over the single parameter one (p = 0.002). While cross-validation attributed the highest AUC value to the model consisting of TBR and rCBV, it also suggested that the addition of rTTP resulted in the highest accuracy. Overall, multiparametric models performed better than single parameter ones.
A multiparametric MRI-PWI and [18F]FET-PET model consisting of TBR, rCBV and PWI rTTP significantly outperformed the use of rTBR alone, which was the best single parameter approach. Secondarily, we firstly report the potential usefulness of PWI rTTP for discrimination of PD from RN in patients with glioma; however, for validation of our findings the prospective studies with larger patient samples are necessary.
灌注加权(PWI)磁共振成像(MRI)和 O-(2-[18F] 氟乙基-L-酪氨酸([18F]FET)正电子发射断层扫描(PET)均有助于区分胶质瘤患者的进行性疾病(PD)与放射性坏死(RN)。既往文献表明,FET-PET 和 MRI-PWI 的联合使用具有优势;然而,与单一模态相比,其诊断性能仅略有提高。因此,本研究的目的是进一步探讨 MRI-PWI 和 [18F]FET-PET 联合使用对区分 PD 与 RN 的益处。其次,我们评估了脑血流量(CBF)、平均通过时间(MTT)和达峰时间(TTP)的有用性,因为之前的研究主要检查了脑血容量(CBV)。
在这项单中心研究中,我们回顾性地确定了疑似肿瘤复发的 WHO 分级 II-IV 级胶质瘤患者,其结构 MRI 表现存在模棱两可的发现。为了区分 PD 与 RN,我们使用了 MRI-PWI 和 [18F]FET-PET。动态对比磁共振灌注成像(DCE-MRI-PWI)提供了来自灌注图的归一化参数(相对 CBV、rCBF、rMTT、rTTP)。计算了包括平均和最大肿瘤与脑比(TBR、TBR)在内的静态 [18F]FET-PET 参数。基于组织病理学和放射临床随访,我们在 27 例患者中诊断为 PD,在 10 例患者中诊断为 RN。使用受试者工作特征(ROC)分析,计算了单参数和多参数模型的曲线下面积(AUC)值。通过方差分析和交叉验证评估了单参数和多参数方法的性能。
在应用纳入和排除标准后,我们共纳入了 37 例患者。关于基于样本内的方法,在单参数分析中,rTBR(AUC=0.91,p<0.001)、rTBR(AUC=0.89,p<0.001)、rTTP(AUC=0.87,p<0.001)和 rCBV(AUC=0.84,p<0.001)在区分 PD 与 RN 方面均有效。rCBF 和 rMTT 未达到统计学意义。由 TBR、rCBV 和 rTTP 组成的分类模型的 AUC 为 0.98(p<0.001),优于 rTBR 单独使用,后者是 AUC 最高的单参数方法。方差分析证实了多参数方法优于单参数方法(p=0.002)。虽然交叉验证归因于 TBR 和 rCBV 组成的模型具有最高的 AUC 值,但它也表明添加 rTTP 可获得最高的准确性。总体而言,多参数模型的性能优于单参数模型。
由 TBR、rCBV 和 PWI rTTP 组成的多参数 MRI-PWI 和 [18F]FET-PET 模型显著优于 rTBR 单独使用,后者是最佳的单参数方法。其次,我们首次报告了 PWI rTTP 用于区分胶质瘤患者 PD 与 RN 的潜在有用性;然而,为了验证我们的发现,需要进行具有更大患者样本的前瞻性研究。