Suppr超能文献

预测冠状动脉钙化存在的新模型

New Model for Predicting the Presence of Coronary Artery Calcification.

作者信息

Park Samel, Hong Min, Lee HwaMin, Cho Nam-Jun, Lee Eun-Young, Lee Won-Young, Rhee Eun-Jung, Gil Hyo-Wook

机构信息

Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea.

Department of Software Convergence, Soonchunhyang University, Asan 31538, Korea.

出版信息

J Clin Med. 2021 Jan 25;10(3):457. doi: 10.3390/jcm10030457.

Abstract

Coronary artery calcification (CAC) is a feature of coronary atherosclerosis and a well-known risk factor for cardiovascular disease (CVD). As the absence of CAC is associated with a lower incidence rate of CVD, measurement of a CAC score is helpful for risk stratification when the risk decision is uncertain. This was a retrospective study with an aim to build a model to predict the presence of CAC (i.e., CAC score = 0 or not) and evaluate the discrimination and calibration power of the model. Our data set was divided into two set (80% for training set and 20% for test set). Ten-fold cross-validation was applied with ten times of interaction in each fold. We built prediction models using logistic regression (LRM), classification and regression tree (CART), conditional inference tree (CIT), and random forest (RF). A total of 3,302 patients from two cohorts (Soonchunhyang University Cheonan Hospital and Kangbuk Samsung Health Study) were enrolled. These patients' ages were between 40 and 75 years. All models showed acceptable accuracies (LRM, 70.71%; CART, 71.32%; CIT, 71.32%; and RF, 71.02%). The decision tree model using CART and CIT showed a reasonable accuracy without complexity. It could be implemented in real-world practice.

摘要

冠状动脉钙化(CAC)是冠状动脉粥样硬化的一个特征,也是心血管疾病(CVD)的一个众所周知的危险因素。由于无CAC与较低的CVD发病率相关,因此当风险决策不确定时,测量CAC评分有助于进行风险分层。这是一项回顾性研究,旨在建立一个预测CAC存在情况(即CAC评分=0与否)的模型,并评估该模型的辨别力和校准能力。我们的数据集被分为两组(80%作为训练集,20%作为测试集)。采用十折交叉验证,每折进行十次交互。我们使用逻辑回归(LRM)、分类与回归树(CART)、条件推断树(CIT)和随机森林(RF)建立预测模型。总共纳入了来自两个队列(顺天乡大学天安医院和江北三星健康研究)的3302名患者。这些患者的年龄在40至75岁之间。所有模型都显示出可接受的准确率(LRM为70.71%;CART为71.32%;CIT为71.32%;RF为71.02%)。使用CART和CIT的决策树模型显示出合理的准确率且不复杂。它可以在实际应用中实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/000e/7865676/88080e142262/jcm-10-00457-g001.jpg

相似文献

1
New Model for Predicting the Presence of Coronary Artery Calcification.
J Clin Med. 2021 Jan 25;10(3):457. doi: 10.3390/jcm10030457.
2
5
Comparing Risk Scores in the Prediction of Coronary and Cardiovascular Deaths: Coronary Artery Calcium Consortium.
JACC Cardiovasc Imaging. 2021 Feb;14(2):411-421. doi: 10.1016/j.jcmg.2019.12.010. Epub 2020 Jan 15.
7
Machine Learning Adds to Clinical and CAC Assessments in Predicting 10-Year CHD and CVD Deaths.
JACC Cardiovasc Imaging. 2021 Mar;14(3):615-625. doi: 10.1016/j.jcmg.2020.08.024. Epub 2020 Oct 28.
8

引用本文的文献

1
Artificial Intelligence-Assisted Perfusion Density as Biomarker for Screening Diabetic Nephropathy.
Transl Vis Sci Technol. 2024 Oct 1;13(10):19. doi: 10.1167/tvst.13.10.19.
3
Circulating miR-129-3p in combination with clinical factors predicts vascular calcification in hemodialysis patients.
Clin Kidney J. 2024 Feb 15;17(3):sfae038. doi: 10.1093/ckj/sfae038. eCollection 2024 Mar.
6
Bibliometric and Visual Analysis of Vascular Calcification Research.
Front Pharmacol. 2021 Jul 15;12:690392. doi: 10.3389/fphar.2021.690392. eCollection 2021.

本文引用的文献

2
2018 Guidelines for the management of dyslipidemia.
Korean J Intern Med. 2019 Jul;34(4):723-771. doi: 10.3904/kjim.2019.188. Epub 2019 Jul 1.
4
Coronary Calcium Score and Cardiovascular Risk.
J Am Coll Cardiol. 2018 Jul 24;72(4):434-447. doi: 10.1016/j.jacc.2018.05.027.
6
Coronary Artery Calcification and its Progression: What Does it Really Mean?
JACC Cardiovasc Imaging. 2018 Jan;11(1):127-142. doi: 10.1016/j.jcmg.2017.10.012.
7
Association Between Coronary Artery Calcification and the Hemoglobin Glycation Index: The Kangbuk Samsung Health Study.
J Clin Endocrinol Metab. 2017 Dec 1;102(12):4634-4641. doi: 10.1210/jc.2017-01723.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验