Suppr超能文献

基于 DNA 甲基化的分子亚型可预测乳腺癌患者的预后。

DNA Methylation Based Molecular Subtypes Predict Prognosis in Breast Cancer Patients.

机构信息

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

Cancer Control. 2021 Jan-Dec;28:1073274820988519. doi: 10.1177/1073274820988519.

Abstract

BACKGROUND

Epigenetic changes are tightly linked to tumorigenesis development and malignant transformation' However, DNA methylation occurs earlier and is constant during tumorigenesis. It plays an important role in controlling gene expression in cancer cells.

METHODS

In this study, we determining the prognostic value of molecular subtypes based on DNA methylation status in breast cancer samples obtained from The Cancer Genome Atlas database (TCGA).

RESULTS

Seven clusters and 204 corresponding promoter genes were identified based on consensus clustering using 166 CpG sites that significantly influenced survival outcomes. The overall survival (OS) analysis showed a significant prognostic difference among the 7 groups (p<0.05). Finally, a prognostic model was used to estimate the results of patients on the testing set based on the classification findings of a training dataset DNA methylation subgroups.

CONCLUSIONS

The model was found to be important in the identification of novel biomarkers and could be of help to patients with different breast cancer subtypes when predicting prognosis, clinical diagnosis and management.

摘要

背景

表观遗传变化与肿瘤发生发展和恶性转化密切相关。然而,DNA 甲基化在肿瘤发生过程中发生得更早且保持稳定。它在控制癌细胞中的基因表达方面发挥着重要作用。

方法

在这项研究中,我们根据从癌症基因组图谱数据库(TCGA)获得的乳腺癌样本中的 DNA 甲基化状态,确定基于分子亚型的预后价值。

结果

使用 166 个显著影响生存结果的 CpG 位点,通过一致性聚类确定了 7 个簇和 204 个相应的启动子基因。总体生存(OS)分析显示 7 组之间存在显著的预后差异(p<0.05)。最后,根据训练数据集的分类发现,使用预后模型来估计测试集中患者的结果。

结论

该模型在鉴定新的生物标志物方面非常重要,当预测预后、临床诊断和管理时,可为不同乳腺癌亚型的患者提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6abd/8482718/83c26a239a60/10.1177_1073274820988519-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验