革兰氏阳性嗜热细菌中的新型细胞外电子传递通道
Novel Extracellular Electron Transfer Channels in a Gram-Positive Thermophilic Bacterium.
作者信息
Gavrilov Sergey N, Zavarzina Daria G, Elizarov Ivan M, Tikhonova Tamara V, Dergousova Natalia I, Popov Vladimir O, Lloyd Jonathan R, Knight David, El-Naggar Mohamed Y, Pirbadian Sahand, Leung Kar Man, Robb Frank T, Zakhartsev Maksim V, Bretschger Orianna, Bonch-Osmolovskaya Elizaveta A
机构信息
Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia.
Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
出版信息
Front Microbiol. 2021 Jan 11;11:597818. doi: 10.3389/fmicb.2020.597818. eCollection 2020.
Biogenic transformation of Fe minerals, associated with extracellular electron transfer (EET), allows microorganisms to exploit high-potential refractory electron acceptors for energy generation. EET-capable thermophiles are dominated by hyperthermophilic archaea and Gram-positive bacteria. Information on their EET pathways is sparse. Here, we describe EET channels in the thermophilic Gram-positive bacterium that drive exoelectrogenesis and rapid conversion of amorphous mineral ferrihydrite to large magnetite crystals. Microscopic studies indicated biocontrolled formation of unusual formicary-like ultrastructure of the magnetite crystals and revealed active colonization of anodes in bioelectrochemical systems (BESs) by . The internal structure of micron-scale biogenic magnetite crystals is reported for the first time. Genome analysis and expression profiling revealed three constitutive -type multiheme cytochromes involved in electron exchange with ferrihydrite or an anode, sharing insignificant homology with previously described EET-related cytochromes thus representing novel determinants of EET. Our studies identify these cytochromes as extracellular and reveal potentially novel mechanisms of cell-to-mineral interactions in thermal environments.
与细胞外电子转移(EET)相关的铁矿物生物转化,使微生物能够利用高电位难熔电子受体来产生能量。具有EET能力的嗜热菌主要是超嗜热古菌和革兰氏阳性细菌。关于它们EET途径的信息很少。在这里,我们描述了嗜热革兰氏阳性细菌中的EET通道,这些通道驱动细胞外产电以及将无定形矿物水铁矿快速转化为大的磁铁矿晶体。显微镜研究表明,磁铁矿晶体形成了不同寻常的蚁巢状超微结构,且这种结构受生物控制,研究还揭示了该细菌在生物电化学系统(BESs)中对阳极的积极定殖。首次报道了微米级生物成因磁铁矿晶体的内部结构。基因组分析和表达谱分析揭示了三种组成型多血红素细胞色素,它们参与与水铁矿或阳极的电子交换,与先前描述的与EET相关的细胞色素同源性较低,因此代表了EET的新决定因素。我们的研究将这些细胞色素鉴定为细胞外色素,并揭示了热环境中细胞与矿物相互作用的潜在新机制。
相似文献
Front Microbiol. 2021-1-11
Appl Environ Microbiol. 2023-9-8
Front Microbiol. 2023-10-20
Microbiol Spectr. 2022-12-21
引用本文的文献
Appl Environ Microbiol. 2025-4-23
Mol Biol Evol. 2022-7-2
本文引用的文献
Anal Chim Acta. 2019-5-7
PLoS Comput Biol. 2019-4-8
Nucleic Acids Res. 2019-1-8
Nat Biotechnol. 2018-8-27