Suppr超能文献

基于逆向伍德-Ljungdahl途径和直接电子转移机制对“碱乙酸共生菌”共生生活方式的基因组学见解。

Genomic Insights into Syntrophic Lifestyle of ' Contubernalis alkaliaceticus' Based on the Reversed Wood-Ljungdahl Pathway and Mechanism of Direct Electron Transfer.

作者信息

Frolov Evgenii N, Gavrilov Sergey N, Toshchakov Stepan V, Zavarzina Daria G

机构信息

Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, Moscow 117312, Russia.

National Research Centre "Kurchatov Institute", Akademika Kurchatova Sq., 1, Moscow 123182, Russia.

出版信息

Life (Basel). 2023 Oct 20;13(10):2084. doi: 10.3390/life13102084.

Abstract

The anaerobic oxidation of fatty acids and alcohols occurs near the thermodynamic limit of life. This process is driven by syntrophic bacteria that oxidize fatty acids and/or alcohols, their syntrophic partners that consume the products of this oxidation, and the pathways for interspecies electron exchange via these products or direct interspecies electron transfer (DIET). Due to the interdependence of syntrophic microorganisms on each other's metabolic activity, their isolation in pure cultures is almost impossible. Thus, little is known about their physiology, and the only available way to fill in the knowledge gap on these organisms is genomic and metabolic analysis of syntrophic cultures. Here we report the results of genome sequencing and analysis of an obligately syntrophic alkaliphilic bacterium Contubernalis alkaliaceticus'. The genomic data suggest that acetate oxidation is carried out by the Wood-Ljungdahl pathway, while a bimodular respiratory system involving an Rnf complex and a Na-dependent ATP synthase is used for energy conservation. The predicted genomic ability of ' C. alkaliaceticus' to outperform interspecies electron transfer both indirectly, via H or formate, and directly, via pili-like appendages of its syntrophic partner or conductive mineral particles, was experimentally demonstrated. This is the first indication of DIET in the class .

摘要

脂肪酸和醇类的厌氧氧化发生在生命的热力学极限附近。这个过程由氧化脂肪酸和/或醇类的互营细菌、消耗这种氧化产物的互营伙伴以及通过这些产物进行种间电子交换或直接种间电子转移(DIET)的途径驱动。由于互营微生物彼此的代谢活动相互依赖,几乎不可能将它们分离培养成纯培养物。因此,人们对它们的生理学了解甚少,填补这些生物知识空白的唯一可用方法是对互营培养物进行基因组和代谢分析。在此,我们报告了专性互营嗜碱细菌“碱乙酸共栖菌”的基因组测序和分析结果。基因组数据表明,乙酸氧化是通过伍德-Ljungdahl途径进行的,而涉及Rnf复合物和钠依赖性ATP合酶的双模块呼吸系统用于能量守恒。“碱乙酸共栖菌”通过氢或甲酸间接以及通过其互营伙伴的菌毛状附属物或导电矿物颗粒直接进行种间电子转移的预测基因组能力已通过实验得到证实。这是该类群中DIET的首个迹象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7643/10608574/3f03de37c7ec/life-13-02084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验