Suppr超能文献

常规培养系统与临时浸没培养系统对‘’微繁殖(增殖阶段)的比较

Comparison of conventional and temporary immersion systems on micropropagation (multiplication phase) of ''.

作者信息

Monja-Mio Kelly M, Olvera-Casanova Diego, Herrera-Alamillo Miguel Á, Sánchez-Teyer Felipe L, Robert Manuel L

机构信息

Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico.

出版信息

3 Biotech. 2021 Feb;11(2):77. doi: 10.1007/s13205-020-02604-8. Epub 2021 Jan 15.

Abstract

The aim of this study was to improve the quality of the micropropagated Haw. plants cultured in temporary immersion bioreactors (TIS) comparing them with those produced through conventional semisolid-solid tissue culture system (SS). The Recipient for Automated Temporary Immersion (RITA) bioreactor was used as TIS in this work. The effect of different culture conditions, such as explants density, genotype, and duration of the incubation stages, were analyzed. The growth and morphological parameters measured for the in vitro cultured plants were: plant height, number of new leaves, number of shoots/explants, growth index (GI), dry mass content, and water content. In all experiments, it was observed that plantlets cultivated in the TIS grew larger than those cultivated in SS. Analyzing all the parameters used in this study, the results showed that RITA bioreactor generates a better shoot production and a better GI when using 20 plantlets per container. The number of shoots increased with time of culture (60 days) in both systems. However, the shoots and plantlets cultivated in TIS grew bigger and showed better quality (did not present necrosis in the leaves) than the ones cultured in SS. This study provides experimental evidence that the application of TIS for micropropagation of is a viable option for the production of high-quality shoots for reforestation purposes.

摘要

本研究的目的是通过将临时浸没式生物反应器(TIS)中培养的山楂微繁殖植株与通过传统半固体-固体组织培养系统(SS)产生的植株进行比较,来提高其质量。本研究中使用自动临时浸没式(RITA)生物反应器作为TIS。分析了不同培养条件的影响,如外植体密度、基因型和培养阶段的持续时间。对体外培养植株测量的生长和形态参数包括:株高、新叶数量、芽数/外植体、生长指数(GI)、干物质含量和含水量。在所有实验中,观察到在TIS中培养的幼苗比在SS中培养的长得更大。分析本研究中使用的所有参数,结果表明,当每个容器使用20株幼苗时,RITA生物反应器能产生更好的芽产量和更好的GI。在两个系统中,芽数均随培养时间(60天)增加。然而,与在SS中培养的相比,在TIS中培养的芽和幼苗长得更大且质量更好(叶片未出现坏死)。本研究提供了实验证据,表明将TIS应用于山楂的微繁殖是为造林目的生产高质量芽的可行选择。

相似文献

1
Comparison of conventional and temporary immersion systems on micropropagation (multiplication phase) of ''.
3 Biotech. 2021 Feb;11(2):77. doi: 10.1007/s13205-020-02604-8. Epub 2021 Jan 15.
2
Assessment of different temporary immersion systems in the micropropagation of anthurium ().
3 Biotech. 2019 Aug;9(8):307. doi: 10.1007/s13205-019-1833-2. Epub 2019 Jul 26.
3
Temporary immersion systems induce photomixotrophism during in vitro propagation of agave Tobalá.
3 Biotech. 2024 Mar;14(3):74. doi: 10.1007/s13205-024-03928-5. Epub 2024 Feb 14.
4
Alstroemeria Micropropagation in a RITA Temporary Immersion System.
Methods Mol Biol. 2024;2759:157-164. doi: 10.1007/978-1-0716-3654-1_15.
5
BioMINT: A Temporary Immersion System for Agave Micropropagation.
Methods Mol Biol. 2024;2759:77-88. doi: 10.1007/978-1-0716-3654-1_8.
6
A temporary immersion system for mass micropropagation of pitahaya ().
3 Biotech. 2021 Oct;11(10):437. doi: 10.1007/s13205-021-02984-5. Epub 2021 Sep 17.
7
Micropropagation of (Bateman) Dressler et W. E. Higging in Temporary Immersion Systems.
3 Biotech. 2020 Jan;10(1):26. doi: 10.1007/s13205-019-2010-3. Epub 2020 Jan 3.
8
Plant Micropropagation and Temporary Immersion Systems.
Methods Mol Biol. 2024;2827:35-50. doi: 10.1007/978-1-0716-3954-2_3.
10
In Vitro Regeneration of L. by Using a Temporary Immersion System.
Plants (Basel). 2019 Jun 16;8(6):177. doi: 10.3390/plants8060177.

引用本文的文献

2
Temporary immersion systems induce photomixotrophism during in vitro propagation of agave Tobalá.
3 Biotech. 2024 Mar;14(3):74. doi: 10.1007/s13205-024-03928-5. Epub 2024 Feb 14.
3
Bioreactor systems for micropropagation of plants: present scenario and future prospects.
Front Plant Sci. 2023 Apr 19;14:1159588. doi: 10.3389/fpls.2023.1159588. eCollection 2023.
5
A Temporary Immersion System to Improve Micropropagation.
Front Plant Sci. 2022 Jun 23;13:895971. doi: 10.3389/fpls.2022.895971. eCollection 2022.
6
Advances in the Micropropagation and Genetic Transformation of Species.
Plants (Basel). 2022 Jul 1;11(13):1757. doi: 10.3390/plants11131757.
7
A temporary immersion system for mass micropropagation of pitahaya ().
3 Biotech. 2021 Oct;11(10):437. doi: 10.1007/s13205-021-02984-5. Epub 2021 Sep 17.

本文引用的文献

1
Use of bioreactor systems in the propagation of forest trees.
Eng Life Sci. 2019 Sep 30;19(12):896-915. doi: 10.1002/elsc.201900041. eCollection 2019 Dec.
2
Assessment of different temporary immersion systems in the micropropagation of anthurium ().
3 Biotech. 2019 Aug;9(8):307. doi: 10.1007/s13205-019-1833-2. Epub 2019 Jul 26.
3
In vitro multiplication and growth improvement of L. cv Canino with temporary immersion system (Plantform™).
3 Biotech. 2018 Jul;8(7):317. doi: 10.1007/s13205-018-1346-4. Epub 2018 Jul 14.
4
Characterization of aqueous pores in plant cuticles and permeation of ionic solutes.
J Exp Bot. 2006;57(11):2471-91. doi: 10.1093/jxb/erj217. Epub 2006 Jul 6.
5
An efficient method for the micropropagation of Agave species.
Methods Mol Biol. 2006;318:165-78. doi: 10.1385/1-59259-959-1:165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验