Suppr超能文献

通过识别和描述具有不一致参数的小分子来改进小分子力场。

Improving small molecule force fields by identifying and characterizing small molecules with inconsistent parameters.

机构信息

Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA.

Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.

出版信息

J Comput Aided Mol Des. 2021 Mar;35(3):271-284. doi: 10.1007/s10822-020-00367-1. Epub 2021 Jan 28.

Abstract

Many molecular simulation methods use force fields to help model and simulate molecules and their behavior in various environments. Force fields are sets of functions and parameters used to calculate the potential energy of a chemical system as a function of the atomic coordinates. Despite the widespread use of force fields, their inadequacies are often thought to contribute to systematic errors in molecular simulations. Furthermore, different force fields tend to give varying results on the same systems with the same simulation settings. Here, we present a pipeline for comparing the geometries of small molecule conformers. We aimed to identify molecules or chemistries that are particularly informative for future force field development because they display inconsistencies between force fields. We applied our pipeline to a subset of the eMolecules database, and highlighted molecules that appear to be parameterized inconsistently across different force fields. We then identified over-represented functional groups in these molecule sets. The molecules and moieties identified by this pipeline may be particularly helpful for future force field parameterization.

摘要

许多分子模拟方法使用力场来帮助建模和模拟分子及其在各种环境中的行为。力场是一组函数和参数,用于计算化学系统的势能作为原子坐标的函数。尽管力场被广泛使用,但它们的不足往往被认为会导致分子模拟中的系统误差。此外,不同的力场往往会在用相同的模拟设置对相同的系统产生不同的结果。在这里,我们提出了一个用于比较小分子构象的几何形状的管道。我们的目的是确定那些对未来力场发展特别有信息价值的分子或化学物质,因为它们在力场之间显示出不一致性。我们将我们的管道应用于 eMolecules 数据库的一个子集,并突出显示了在不同力场中参数化不一致的分子。然后,我们确定了这些分子集中出现的代表性官能团。通过这个管道识别出的分子和部分可能对未来的力场参数化特别有帮助。

相似文献

6
QUBEKit: Automating the Derivation of Force Field Parameters from Quantum Mechanics.QUBEKit:从量子力学中自动推导出力场参数。
J Chem Inf Model. 2019 Apr 22;59(4):1366-1381. doi: 10.1021/acs.jcim.8b00767. Epub 2019 Feb 22.

引用本文的文献

5
Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field.开放力场的分子几何和能量的协同评估。
J Chem Inf Model. 2022 Dec 12;62(23):6094-6104. doi: 10.1021/acs.jcim.2c01185. Epub 2022 Nov 26.

本文引用的文献

1
MMFF VI. MMFF94s option for energy minimization studies.MMFF VI。用于能量最小化研究的MMFF94s选项。
J Comput Chem. 1999 May;20(7):720-729. doi: 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X.
3
OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules.OPLS3e:扩展适用于类药物小分子的力场覆盖范围。
J Chem Theory Comput. 2019 Mar 12;15(3):1863-1874. doi: 10.1021/acs.jctc.8b01026. Epub 2019 Mar 4.
6
Escaping Atom Types in Force Fields Using Direct Chemical Perception.利用直接化学感知逃避力场中的原子类型。
J Chem Theory Comput. 2018 Nov 13;14(11):6076-6092. doi: 10.1021/acs.jctc.8b00640. Epub 2018 Oct 30.
7
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.OpenMM 7:分子动力学高性能算法的快速开发。
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. eCollection 2017 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验