Suppr超能文献

一种新型的独立式微流控装置,用于局部控制肠道细菌相互作用中的氧张力。

A novel standalone microfluidic device for local control of oxygen tension for intestinal-bacteria interactions.

机构信息

Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.

出版信息

FASEB J. 2021 Feb;35(2):e21291. doi: 10.1096/fj.202001600RR.

Abstract

The intestinal environment is unique because it supports the intestinal epithelial cells under a normal oxygen environment and the microbiota under an anoxic environment. Due to importance of understanding the interactions between the epithelium and the microbiota, there is a strong need for developing representative and simple experimental models. Current approaches do not capture the partitioned oxygen environment, require external anaerobic chambers, or are complex. Another major limitation is that with the solutions that can mimic this oxygen environment, the oxygenation level of the epithelial cells is not known, raising the question whether the cells are hypoxic or not. We report standalone microfluidic devices that form a partitioned oxygen environment without the use of an external anaerobic chamber or oxygen scavengers to coculture intestinal epithelial and bacterial cells. By changing the thickness of the device cover, the oxygen tension in the chamber was modulated. We verified the oxygen levels using several tests: microscale oxygen sensitive sensors which were integrated within the devices, immunostaining of Caco-2 cells to determine hypoxia levels, and genetically encoded bacteria to visualize the growth. Collectively, these methods monitored oxygen concentrations in the devices more comprehensively than previous reports and allowed for control of oxygen tension to match the requirements of both intestinal cells and anaerobic bacteria. Our experimental model is supported by the mathematical model that considered diffusion of oxygen into the top chamber. This allowed us to experimentally determine the oxygen consumption rate of the intestinal epithelial cells under perfusion.

摘要

肠道环境是独特的,因为它在正常氧环境下支持肠道上皮细胞,在缺氧环境下支持微生物群。由于理解上皮细胞和微生物群之间相互作用的重要性,因此强烈需要开发具有代表性和简单的实验模型。目前的方法无法捕捉到分区的氧气环境,需要外部厌氧室,或者方法复杂。另一个主要限制是,使用可以模拟这种氧气环境的解决方案时,无法得知上皮细胞的氧合水平,这就提出了细胞是否缺氧的问题。我们报告了独立的微流控设备,这些设备无需使用外部厌氧室或氧气清除剂即可形成分区氧气环境,从而共培养肠道上皮细胞和细菌细胞。通过改变设备盖的厚度,可以调节腔内的氧张力。我们使用几种测试方法验证了氧气水平:集成在设备中的微尺度氧气敏感传感器、用于确定缺氧水平的 Caco-2 细胞免疫染色以及用于可视化生长的遗传编码细菌。这些方法共同比以前的报告更全面地监测了设备中的氧气浓度,并允许控制氧张力以匹配肠道细胞和厌氧菌的要求。我们的实验模型得到了考虑氧气扩散到顶部腔室的数学模型的支持。这使我们能够在灌注下实验确定肠道上皮细胞的耗氧率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验