Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.
Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, UMR 9199 (Neurodegenerative Diseases Laboratory), Fontenay-aux-Roses, France.
NMR Biomed. 2021 Apr;34(4):e4478. doi: 10.1002/nbm.4478. Epub 2021 Jan 27.
Brain water and some critically important energy metabolites, such as lactate or glucose, are present in both intracellular and extracellular spaces (ICS/ECS) at significant levels. This ubiquitous nature makes diffusion MRI/MRS data sometimes difficult to interpret and model. While it is possible to glean information on the diffusion properties in ICS by measuring the diffusion of purely intracellular endogenous metabolites (such as NAA), the absence of endogenous markers specific to ECS hampers similar analyses in this compartment. In past experiments, exogenous probes have therefore been injected into the brain to assess their apparent diffusion coefficient (ADC) and thus estimate tortuosity in ECS. Here, we use a similar approach in mice by injecting sucrose, a well-known ECS marker, in either the lateral ventricles or directly in the prefrontal cortex. For the first time, we propose a thorough characterization of ECS diffusion properties encompassing (1) short-range restriction by looking at signal attenuation at high b values, (2) tortuosity and long-range restriction by measuring ADC time-dependence at long diffusion times and (3) microscopic anisotropy by performing double diffusion encoding (DDE) measurements. Overall, sucrose diffusion behavior is strikingly different from that of intracellular metabolites. Acquisitions at high b values not only reveal faster sucrose diffusion but also some sensitivity to restriction, suggesting that the diffusion in ECS is not fully Gaussian at high b. The time evolution of the ADC at long diffusion times shows that the tortuosity regime is not reached yet in the case of sucrose, while DDE experiments suggest that it is not trapped in elongated structures. No major difference in sucrose diffusion properties is reported between the two investigated routes of injection and brain regions. These original experimental insights should be useful to better interpret and model the diffusion signal of molecules that are distributed between ICS and ECS compartments.
脑水和一些非常重要的能量代谢物,如乳酸或葡萄糖,在细胞内和细胞外空间(ICS/ECS)中都以显著水平存在。这种普遍存在的性质使得扩散 MRI/MRS 数据有时难以解释和建模。虽然通过测量纯细胞内内源性代谢物(如 NAA)的扩散,可以获得 ICS 中扩散特性的信息,但 ECS 中缺乏特定的内源性标志物,阻碍了在该隔室中进行类似的分析。因此,在过去的实验中,已经向大脑中注射外源性探针,以评估其表观扩散系数(ADC),从而估计 ECS 中的曲折度。在这里,我们在小鼠中使用类似的方法,通过向侧脑室或直接向前额叶皮层注射蔗糖(一种众所周知的 ECS 标志物)来评估其表观扩散系数(ADC),从而估计 ECS 中的曲折度。这是首次提出一种全面的方法来描述 ECS 的扩散特性,包括:(1)通过在高 b 值下观察信号衰减来研究短程限制,(2)通过在长扩散时间下测量 ADC 的时间依赖性来研究曲折度和长程限制,(3)通过进行双扩散编码(DDE)测量来研究微观各向异性。总的来说,蔗糖的扩散行为与细胞内代谢物有很大的不同。在高 b 值下的采集不仅揭示了更快的蔗糖扩散,而且对限制也有一定的敏感性,这表明在高 b 值下 ECS 的扩散不是完全的高斯分布。在长扩散时间下的 ADC 的时间演化表明,蔗糖还没有达到曲折度的范围,而 DDE 实验表明,蔗糖没有被困在伸长的结构中。在两种注射途径和脑区之间,没有报告蔗糖扩散性质有重大差异。这些原始的实验见解对于更好地解释和建模在 ICS 和 ECS 隔室之间分布的分子的扩散信号应该是有用的。