Suppr超能文献

利用二元逻辑回归模型鉴定孟加拉国达卡摩托车事故严重程度的影响因素。

Identification of factors influencing severity of motorcycle crashes in Dhaka, Bangladesh using binary logistic regression model.

机构信息

Asian Disaster Preparedness Center (ADPC), Dhaka, Bangladesh.

Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.

出版信息

Int J Inj Contr Saf Promot. 2021 Jun;28(2):141-152. doi: 10.1080/17457300.2021.1878230. Epub 2021 Jan 28.

Abstract

Dhaka, the capital and megacity of the developing country Bangladesh, has experienced a sharp rise in motorcycle users in the last decade, especially after the introduction of ridesharing services. Therefore, the morbidity and mortality rates of motorcycle crash injuries have also increased and become one of the major safety concerns. However, there is scant empirical evidence on motorcycle crash severity in the context of developing countries. Hence, this study was conducted to identify the factors that influenced the severity of motorcycle crashes in Dhaka. A binary logistic regression model was developed using motorcycle crash data of Dhaka over the period of 2006-2015 to identify the contributing factors of motorcycle crash severity. The model output showed that eleven factors significantly increased the probability of fatal motorcycle crashes. These factors were crashes occurring on weekends, during the rainy season, during dawn and night period, at non-intersections, on straight and flat roads, on highways, hit pedestrian type crashes, crashes involving motorcycles with no defect, crashes with heavier vehicles, crashes involving motorcyclists not wearing helmets, and drivers with alcohol suspicion. These findings would help to formulate prevention strategies to reduce the injury severity of motorcycle crashes in the developing countries.

摘要

达卡,发展中国家孟加拉国的首都和特大城市,在过去十年中经历了摩托车使用者的急剧增加,尤其是在拼车服务推出之后。因此,摩托车事故受伤的发病率和死亡率也有所上升,成为主要的安全关注点之一。然而,发展中国家的摩托车事故严重程度方面几乎没有经验证据。因此,本研究旨在确定影响达卡摩托车事故严重程度的因素。本研究使用 2006 年至 2015 年期间达卡的摩托车事故数据,建立了二元逻辑回归模型,以确定摩托车事故严重程度的影响因素。模型输出表明,有十一个因素显著增加了致命性摩托车事故的发生概率。这些因素包括周末发生的事故、雨季发生的事故、黎明和夜间发生的事故、非交叉路口发生的事故、直道和平坦道路上发生的事故、高速公路上发生的事故、撞击行人类型的事故、无缺陷摩托车发生的事故、与重型车辆发生的事故、未戴头盔的摩托车驾驶员发生的事故、以及有酒精嫌疑的驾驶员发生的事故。这些发现将有助于制定预防策略,以减少发展中国家摩托车事故的伤害严重程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验