Suppr超能文献

应用混合层次分析法-偏好顺序结构评估法来评估影响道路交通事故因素的严重程度。

An application of the hybrid AHP-PROMETHEE approach to evaluate the severity of the factors influencing road accidents.

作者信息

Trivedi Priyank, Shah Jiten, Moslem Sarbast, Pilla Francesco

机构信息

Civil Engineering Department, Institute of Infrastructure Technology Research and Management, [IITRAM], Ahmedabad, India.

School of Architecture Planning and Environmental Policy, University College of Dublin, D04 V1W8, Belfield, Dublin, Ireland.

出版信息

Heliyon. 2023 Oct 20;9(11):e21187. doi: 10.1016/j.heliyon.2023.e21187. eCollection 2023 Nov.

Abstract

The evaluation of the severity of the factors influencing road accidents with a detailed severity distribution is critical to plan evidence-based road safety improvements and strategies. However, currently available studies use statistical and machine learning (ML) models to evaluate the severity of factors causing road accidents without a detailed severity distribution. Further, most of these available models require significant pre-data processing and have certain data-centric limitations. However, the multi criteria decision-making (MCDM) techniques have the potential to combine expert opinions for robust analysis without any pre-data processing calculations. Thus, this study uses a hybrid analytic hierarchy process (AHP) and the preference ranking organisation method for enrichment evaluation (PROMETHEE) approach to analyse the severity of factors and characteristics that influence road accidents within the Gujarat state, using injury types as criteria and minor road accident influencing factors as alternatives. These 82 minor factors have been further characterised into 18 characteristics and 4 major factors. Further, AHP integrated 40 expert inputs to determine criterion weights, while PROMETHEE ranked all minor variables. Then, after applying k-mean clustering, each ranked factor has been classified as very severe, moderately severe, or severe. The result clearly highlights that overspeeding, male gender, and clear weather conditions have been concluded to be the highly severe factors for Gujarat state. Thus, by providing a clear severity analysis and distribution of factors influencing road accidents, the proposed research may help government stakeholders, researchers, and politicians build severity-based road safety reforms and strategies with clarity.

摘要

对影响道路交通事故的因素进行详细严重程度分布的严重性评估,对于规划基于证据的道路安全改进措施和策略至关重要。然而,目前可用的研究使用统计和机器学习(ML)模型来评估导致道路交通事故的因素的严重性,而没有详细的严重程度分布。此外,这些可用模型中的大多数需要大量的预处理数据,并且存在一定的数据中心限制。然而,多准则决策(MCDM)技术有可能在无需任何预处理数据计算的情况下结合专家意见进行稳健分析。因此,本研究使用层次分析法(AHP)和偏好排序组织方法用于富集评估(PROMETHEE)的混合方法,以伤害类型为标准,以轻微道路事故影响因素为替代方案,分析古吉拉特邦内影响道路交通事故的因素和特征的严重性。这82个次要因素进一步被归纳为18个特征和4个主要因素。此外,层次分析法整合了40位专家的意见来确定标准权重,而偏好排序组织方法对所有次要变量进行了排序。然后,在应用k均值聚类后,每个排序后的因素被分类为非常严重、中度严重或严重。结果清楚地表明,超速、男性性别和晴朗天气条件被确定为古吉拉特邦的高度严重因素。因此,通过提供对影响道路交通事故的因素的清晰严重性分析和分布,本研究所提出的研究可能有助于政府利益相关者、研究人员和政治家明确地制定基于严重性的道路安全改革措施和策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03c/10623276/1368d119e531/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验