Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
Risk Assessment Department, ANSES, Maisons-Alfort, France.
Adv Nutr. 2021 Jun 1;12(3):590-599. doi: 10.1093/advances/nmaa176.
The relations between dietary features and human health are varied and complex. Health-related variables are many and they have intricate relations at different and interrelated nutritional levels: nutrients, food groups, and the complex overall pattern. Food-based dietary guidelines (FBDGs) are principally designed to synthesize this information to make it available to the public. Here, we describe the method used to establish healthy eating patterns (HEPs) for the latest French FBDGs, which consists of in-depth food pattern modeling using an enhanced optimization method that gathered all aspects of HEPs. We present the novelty of this food modeling approach for FBDGs, which aims to gather information related to nutrients, food contaminants, and epidemiological relations with long-term health, and to be combined with the objective of realistic dietary patterns that deviate minimally from the prevailing diet. We draw lessons from stepwise implementation of the method and discuss its strengths, limitations, and perspectives. In light of the modeled HEPs, we discuss the importance of food grouping; of accounting for dietary habits while not precluding modeled diets that can be realistic/acceptable; and of taking into account the exposure to food contaminants. We discuss the tolerance and flexibility to be applied to certain dietary reference values for nutrients and health-based guidance values for contaminants so that HEPs can ultimately be identified, and how account can be taken of varied health-related outcomes applied to food groups. Although the approach involves all the peculiar uncertainties of numerous optimization model parameters and input data, its merit is that it offers a rationalized approach to establishing HEPs with multiple constraints and competing objectives. It is also versatile because it is possible to operationalize further dimensions of dietary patterns to favor human and planetary health.
饮食特征与人类健康之间的关系是多样且复杂的。与健康相关的变量很多,它们在不同的、相互关联的营养层面上存在复杂的关系:营养素、食物组以及复杂的整体模式。基于食物的膳食指南(FBDG)主要旨在综合这些信息,以便向公众提供。在这里,我们描述了为最新的法国 FBDG 建立健康饮食模式(HEP)所使用的方法,该方法主要使用一种增强优化方法深入研究食物模式,该方法汇集了 HEP 的各个方面。我们介绍了这种 FBDG 食物建模方法的新颖性,旨在汇集与营养素、食物污染物以及与长期健康相关的流行病学关系的信息,并将其与偏离当前饮食的最小化现实饮食模式的目标相结合。我们从逐步实施该方法中汲取经验教训,并讨论其优缺点和展望。根据所建的 HEP,我们讨论了食物分组的重要性;在不排除可实现/可接受的模型化饮食的情况下考虑饮食习惯的重要性;以及考虑食物污染物暴露的重要性。我们讨论了对营养素的某些膳食参考值和污染物的基于健康的指导值进行调整的容忍度和灵活性,以便最终确定 HEP,并考虑适用于不同健康相关结果的食物组。尽管该方法涉及到许多优化模型参数和输入数据的特殊不确定性,但它的优点在于它提供了一种建立具有多个约束和竞争目标的 HEP 的合理化方法。它还具有多功能性,因为可以进一步操作饮食模式的其他维度,以促进人类和地球的健康。