Suppr超能文献

早期语音学习无需语音类别:基于真实输入的大规模模拟研究的启示。

Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input.

机构信息

Department of Linguistics, University of Maryland, College Park, MD 20742;

University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 9;118(7). doi: 10.1073/pnas.2001844118.

Abstract

Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than nonnative ones. For example, between 6 to 8 mo and 10 to 12 mo, infants learning American English get better at distinguishing English and [l], as in "rock" vs. "lock," relative to infants learning Japanese. Influential accounts of this phenomenon initially proposed that infants group sounds into native vowel- and consonant-like phonetic categories-like and [l] in English-through a statistical clustering mechanism dubbed "distributional learning." The feasibility of this mechanism for learning phonetic categories has been challenged, however. Here, we demonstrate that a distributional learning algorithm operating on naturalistic speech can predict early phonetic learning, as observed in Japanese and American English infants, suggesting that infants might learn through distributional learning after all. We further show, however, that, contrary to the original distributional learning proposal, our model learns units too brief and too fine-grained acoustically to correspond to phonetic categories. This challenges the influential idea that what infants learn are phonetic categories. More broadly, our work introduces a approach to the study of early phonetic learning, together with a quantitative modeling framework that can handle realistic input. This allows accounts of early phonetic learning to be linked to concrete, systematic predictions regarding infants' attunement.

摘要

在婴儿开口说话之前,他们就已经开始适应他们所听到的语言的声音,从而更容易地处理母语的语音差异,而不是非母语的语音差异。例如,在 6 到 8 个月到 10 到 12 个月之间,学习美式英语的婴儿在区分英语和[l](如“rock”与“lock”)方面比学习日语的婴儿要好。这一现象的最初解释认为,婴儿通过一种被称为“分布学习”的统计聚类机制,将声音分组为母语的元音和辅音样的语音类别,如英语中的[l]。然而,这种通过分布学习来学习语音类别的机制的可行性受到了挑战。在这里,我们证明了一种在自然语言环境中运行的分布学习算法可以预测日语和美式英语婴儿早期的语音学习,这表明婴儿可能确实是通过分布学习来学习的。然而,我们进一步表明,与最初的分布学习假说相反,我们的模型学习的单位在声学上过于短暂和精细,无法对应于语音类别。这对婴儿学习的是语音类别的有影响力的观点提出了挑战。更广泛地说,我们的工作引入了一种研究早期语音学习的方法,以及一个可以处理实际输入的定量建模框架。这使得早期语音学习的解释能够与关于婴儿适应能力的具体、系统的预测联系起来。

相似文献

3
Distributional learning of speech sound categories is gated by sensitive periods.语音类别的分布学习受敏感期调控。
Cognition. 2021 Aug;213:104653. doi: 10.1016/j.cognition.2021.104653. Epub 2021 Mar 19.
7
Learning phonetic categories in infancy: The role of word-context information.婴儿期语音范畴的习得:词境信息的作用。
Infant Behav Dev. 2024 Sep;76:101961. doi: 10.1016/j.infbeh.2024.101961. Epub 2024 Jun 24.

引用本文的文献

2
Statistical learning dynamically shapes auditory perception.统计学习动态塑造听觉感知。
NPJ Sci Learn. 2025 Jun 19;10(1):41. doi: 10.1038/s41539-025-00328-z.
3
Statistical learning dynamically shapes auditory perception.统计学习动态地塑造听觉感知。
bioRxiv. 2025 Mar 10:2024.09.09.612146. doi: 10.1101/2024.09.09.612146.
5
The myth of categorical perception.范畴知觉的神话。
J Acoust Soc Am. 2022 Dec;152(6):3819. doi: 10.1121/10.0016614.
6
The nature of non-native speech sound representations.非母语语音表征的本质。
J Acoust Soc Am. 2022 Nov;152(5):3025. doi: 10.1121/10.0015230.
7
Naturalistic speech supports distributional learning across contexts.自然语言支持跨语境的分布学习。
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2123230119. doi: 10.1073/pnas.2123230119. Epub 2022 Sep 12.
9
Do Infants Really Learn Phonetic Categories?婴儿真的能学习语音类别吗?
Open Mind (Camb). 2021 Nov 1;5:113-131. doi: 10.1162/opmi_a_00046. eCollection 2021.

本文引用的文献

8
Phonemes: Lexical access and beyond.音位:词汇通达与超越
Psychon Bull Rev. 2018 Apr;25(2):560-585. doi: 10.3758/s13423-017-1362-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验