Suppr超能文献

一种新型聚合物支架的三维体外培养环境,可从受骨关节炎影响的软骨组织衍生的人软骨细胞中产生软骨祖细胞和间充质干细胞。

A three-dimensional in vitro culture environment of a novel polymer scaffold, yielding chondroprogenitors and mesenchymal stem cells in human chondrocytes derived from osteoarthritis-affected cartilage tissue.

作者信息

Katoh Shojiro, Yoshioka Hiroshi, Iwasaki Masaru, Senthilkumar Rajappa, Rajmohan Mathaiyan, Karthick Ramalingam, Preethy Senthilkumar, Abraham Samuel Jk

机构信息

Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan.

Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan.

出版信息

J Orthop. 2021 Jan 16;23:138-141. doi: 10.1016/j.jor.2021.01.005. eCollection 2021 Jan-Feb.

Abstract

OBJECTIVE

We evaluated the expression of stem/progenitor biomarkers in osteoarthritic tissue derived chondrocytes cultured using a three-dimensional (3D) thermo-reversible gelation polymer (TGP).

METHODS

The chondrocytes from discarded biopsy tissues obtained from human elderly patients with osteoarthritis were cultured using the 3D-TGP up to six weeks.

RESULTS

The chondrocytes grew in a tissue-like manner, without de-differentiation into fibroblasts, and the cells thus tissue-engineered were proven positive for CD49e, OCT4, CD-105 and STRO-1 by immunohistochemistry.

CONCLUSION

This study establishes the efficacy of this 3D-TGP platform for clinically useable tissue-engineered cartilage for improvising the clinical outcome of cell therapy for cartilage repair.

摘要

目的

我们评估了使用三维(3D)热可逆凝胶化聚合物(TGP)培养的骨关节炎组织来源软骨细胞中干/祖细胞生物标志物的表达。

方法

使用3D-TGP培养从老年骨关节炎患者废弃活检组织中获取的软骨细胞,培养时间长达六周。

结果

软骨细胞以组织样方式生长,未分化为成纤维细胞,通过免疫组织化学证明,如此构建的组织工程化细胞对CD49e、OCT4、CD-105和STRO-1呈阳性。

结论

本研究确立了该3D-TGP平台用于临床可用的组织工程化软骨以改善软骨修复细胞治疗临床效果的有效性。

相似文献

7
Comparative analysis of fresh chondrocytes, cultured chondrocytes and chondroprogenitors derived from human articular cartilage.
Acta Histochem. 2020 Jan;122(1):151462. doi: 10.1016/j.acthis.2019.151462. Epub 2019 Nov 13.
8
Evaluation of CD49e as a distinguishing marker for human articular cartilage derived chondroprogenitors.
Knee. 2020 Jun;27(3):833-837. doi: 10.1016/j.knee.2020.04.002. Epub 2020 Apr 18.

引用本文的文献

1
I. Biomaterials for reconstruction of bone and cartilage defects.
J Stem Cells Regen Med. 2023 Dec 31;19(2):34-36. doi: 10.46582/jsrm.1902008. eCollection 2023.
2
3D Bioprinting: A Systematic Review for Future Research Direction.
Indian J Orthop. 2023 Sep 24;57(12):1949-1967. doi: 10.1007/s43465-023-01000-7. eCollection 2023 Dec.
3
Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review.
Heliyon. 2023 Feb 10;9(2):e13464. doi: 10.1016/j.heliyon.2023.e13464. eCollection 2023 Feb.

本文引用的文献

2
Comparative analysis of fresh chondrocytes, cultured chondrocytes and chondroprogenitors derived from human articular cartilage.
Acta Histochem. 2020 Jan;122(1):151462. doi: 10.1016/j.acthis.2019.151462. Epub 2019 Nov 13.
4
The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.
Stem Cells. 2017 Apr;35(4):940-951. doi: 10.1002/stem.2560. Epub 2017 Jan 23.
5
The Oct4 protein: more than a magic stemness marker.
Am J Stem Cells. 2014 Sep 5;3(2):74-82. eCollection 2014.
6
Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions.
Maturitas. 2014 Jul;78(3):188-98. doi: 10.1016/j.maturitas.2014.04.017. Epub 2014 May 2.
7
Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy.
Curr Stem Cell Res Ther. 2009 Dec;4(4):318-29. doi: 10.2174/157488809789649205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验