Suppr超能文献

分层微观结构引导的纤维束成像

Hierarchical Microstructure Informed Tractography.

作者信息

Ocampo-Pineda Mario, Schiavi Simona, Rheault François, Girard Gabriel, Petit Laurent, Descoteaux Maxime, Daducci Alessandro

机构信息

Department of Computer Science, University of Verona, Verona, Italy.

Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Canada.

出版信息

Brain Connect. 2021 Mar;11(2):75-88. doi: 10.1089/brain.2020.0907. Epub 2021 Jan 28.

Abstract

Tractography uses diffusion magnetic resonance imaging to noninvasively infer the macroscopic pathways of white matter fibers and it is the only available technique to probe the structural connectivity of the brain. However, despite this unique and compelling ability and its wide range of possible neurological applications, tractography is still limited, lacks anatomical precision, and suffers from a serious sensitivity/specificity trade-off. For this reason, in the past few years, tractography postprocessing techniques have emerged and proved effective for improving the quality of the reconstructions. Among them, the Convex Optimization Modeling for Microstructure Informed Tractography formulation allows incorporating the anatomical prior that fibers are naturally organized in fascicles, and has obtained exceptional results in increasing the accuracy of the estimated tractograms. We propose an extension to this idea and introduce a multilevel grouping of the streamlines to capture the white matter arrangement in fascicles and subfascicles. We tested our proposed formulation in synthetic and data. Our experiments show that using multiple levels allows considering information about the white matter organization more adequately and helps to improve further the accuracy of the resulting tractograms. This new formulation represents a further important step toward a more accurate structural connectivity estimation.

摘要

纤维束成像利用扩散磁共振成像来无创推断白质纤维的宏观路径,它是唯一可用于探测大脑结构连通性的技术。然而,尽管具有这种独特且引人注目的能力以及广泛的潜在神经学应用,纤维束成像仍然存在局限性,缺乏解剖学精度,并且存在严重的灵敏度/特异性权衡问题。因此,在过去几年中,纤维束成像后处理技术应运而生,并被证明对提高重建质量有效。其中,基于微观结构信息的纤维束成像的凸优化建模公式允许纳入纤维自然成束排列的解剖学先验信息,并且在提高估计纤维束图的准确性方面取得了优异的成果。我们提出了对这一想法的扩展,并引入了流线的多级分组,以捕捉白质在束和子束中的排列。我们在合成数据和实际数据中测试了我们提出的公式。我们的实验表明,使用多个级别可以更充分地考虑白质组织的信息,并有助于进一步提高所得纤维束图的准确性。这种新公式代表了朝着更准确的结构连通性估计迈出的又一重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验