Delinte Nicolas, Dricot Laurence, Macq Benoit, Gosse Claire, Van Reybroeck Marie, Rensonnet Gaetan
Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium.
Front Neurosci. 2023 Jun 7;17:1199568. doi: 10.3389/fnins.2023.1199568. eCollection 2023.
Recent advances in MRI technology have enabled richer multi-shell sequences to be implemented in diffusion MRI, allowing the investigation of both the microscopic and macroscopic organization of the brain white matter and its complex network of neural fibers. The emergence of advanced diffusion models has enabled a more detailed analysis of brain microstructure by estimating the signal received from a voxel as the combination of responses from multiple fiber populations. However, disentangling the individual microstructural properties of different macroscopic white matter tracts where those pathways intersect remains a challenge. Several approaches have been developed to assign microstructural properties to macroscopic streamlines, but often present shortcomings. ROI-based heuristics rely on averages that are not tract-specific. Global methods solve a computationally-intensive global optimization but prevent the use of microstructural properties not included in the model and often require restrictive hypotheses. Other methods use atlases that might not be adequate in population studies where the shape of white matter tracts varies significantly between patients. We introduce UNRAVEL, a framework combining the microscopic and macroscopic scales to unravel multi-fixel microstructure by utilizing tractography. The framework includes commonly-used heuristics as well as a new algorithm, estimating the microstructure of a specific white matter tract with . Our framework grants considerable freedom as the inputs required, a set of streamlines defining a tract and a multi-fixel diffusion model estimated in each voxel, can be defined by the user. We validate our approach on synthetic data and data, including a repeated scan of a subject and a population study of children with dyslexia. In each case, we compare the estimation of microstructural properties obtained with to other commonly-used approaches. Our framework provides estimations of the microstructure at the streamline level, volumetric maps for visualization and mean microstructural values for the whole tract. The algorithm shows increased accuracy, robustness to uncertainties in its inputs and maintains similar or better reproducibility compared to commonly-used analysis approaches. UNRAVEL will provide researchers with a flexible and open-source tool enabling them to study the microstructure of specific white matter pathways with their diffusion model of choice.
磁共振成像(MRI)技术的最新进展使得在扩散MRI中能够实现更丰富的多壳层序列,从而可以研究脑白质的微观和宏观组织结构及其复杂的神经纤维网络。先进扩散模型的出现使得通过将体素接收到的信号估计为多个纤维群体的响应组合,能够对脑微观结构进行更详细的分析。然而,在不同宏观白质束交叉的地方,区分其各自的微观结构属性仍然是一个挑战。已经开发了几种方法来将微观结构属性分配给宏观流线,但这些方法往往存在缺点。基于感兴趣区域(ROI)的启发式方法依赖于并非特定于束的平均值。全局方法解决了计算密集型的全局优化问题,但不允许使用模型中未包含的微观结构属性,并且通常需要严格的假设。其他方法使用图谱,而在人群研究中,这些图谱可能并不适用,因为患者之间白质束的形状差异很大。我们引入了UNRAVEL,这是一个结合微观和宏观尺度的框架,通过利用纤维束成像来揭示多体素微观结构。该框架包括常用的启发式方法以及一种新算法,用于估计特定白质束的微观结构。我们的框架提供了相当大的自由度,因为所需的输入,即一组定义束的流线和在每个体素中估计的多体素扩散模型,可以由用户定义。我们在合成数据和真实数据上验证了我们的方法,包括对一名受试者的重复扫描和对诵读困难儿童的人群研究。在每种情况下,我们将使用UNRAVEL获得的微观结构属性估计与其他常用方法进行比较。我们的框架提供了流线水平的微观结构估计、用于可视化的体积图以及整个束的平均微观结构值。与常用的分析方法相比,UNRAVEL算法显示出更高的准确性、对输入不确定性的鲁棒性,并且保持了相似或更好的可重复性。UNRAVEL将为研究人员提供一个灵活的开源工具,使他们能够使用自己选择的扩散模型来研究特定白质通路的微观结构。