Department of Bioengineering, University of Washington, Seattle, WA, USA.
Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan.
Nat Commun. 2021 Jan 29;12(1):716. doi: 10.1038/s41467-021-20947-5.
For over two decades photoacoustic imaging has been tested clinically, but successful human trials have been limited. To enable quantitative clinical spectroscopy, the fundamental issues of wavelength-dependent fluence variations and inter-wavelength motion must be overcome. Here we propose a real-time, spectroscopic photoacoustic/ultrasound (PAUS) imaging approach using a compact, 1-kHz rate wavelength-tunable laser. Instead of illuminating tissue over a large area, the fiber-optic delivery system surrounding an US array sequentially scans a narrow laser beam, with partial PA image reconstruction for each laser pulse. The final image is then formed by coherently summing partial images. This scheme enables (i) automatic compensation for wavelength-dependent fluence variations in spectroscopic PA imaging and (ii) motion correction of spectroscopic PA frames using US speckle tracking in real-time systems. The 50-Hz video rate PAUS system is demonstrated in vivo using a murine model of labelled drug delivery.
二十多年来,光声成象技术一直处于临床测试阶段,但成功的人体试验仍然有限。为了实现定量的临床光谱分析,必须克服波长相关的光密度变化和波长间运动这两个基本问题。在这里,我们提出了一种实时的、基于光谱学的光声/超声(PAUS)成像方法,该方法使用紧凑的、1kHz 速率可调谐激光。与大面积照射组织的方式不同,光纤传输系统环绕超声阵列,顺序扫描一束很窄的激光束,对每个激光脉冲进行部分光声图像重建。最终的图像是通过相干地对部分图像进行求和而形成的。该方案可以(i)在光谱学光声成象中自动补偿波长相关的光密度变化,(ii)使用超声斑点跟踪在实时系统中对光谱学光声帧进行运动校正。利用标记药物输送的小鼠模型,演示了 50Hz 视频速率的 PAUS 系统的体内实验。