Suppr超能文献

利用深度学习在光声成像中进行联合分割与图像重建并进行误差预测

Joint segmentation and image reconstruction with error prediction in photoacoustic imaging using deep learning.

作者信息

Shang Ruibo, Luke Geoffrey P, O'Donnell Matthew

机构信息

uWAMIT Center, Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Photoacoustics. 2024 Sep 11;40:100645. doi: 10.1016/j.pacs.2024.100645. eCollection 2024 Dec.

Abstract

Deep learning has been used to improve photoacoustic (PA) image reconstruction. One major challenge is that errors cannot be quantified to validate predictions when ground truth is unknown. Validation is key to quantitative applications, especially using limited-bandwidth ultrasonic linear detector arrays. Here, we propose a hybrid Bayesian convolutional neural network (Hybrid-BCNN) to jointly predict PA image and segmentation with error (uncertainty) predictions. Each output pixel represents a probability distribution where error can be quantified. The Hybrid-BCNN was trained with simulated PA data and applied to both simulations and experiments. Due to the sparsity of PA images, segmentation focuses Hybrid-BCNN on minimizing the loss function in regions with PA signals for better predictions. The results show that accurate PA segmentations and images are obtained, and error predictions are highly statistically correlated to actual errors. To leverage error predictions, confidence processing created PA images above a specific confidence level.

摘要

深度学习已被用于改进光声(PA)图像重建。一个主要挑战是,当真实情况未知时,无法对误差进行量化以验证预测结果。验证对于定量应用至关重要,尤其是在使用有限带宽超声线性探测器阵列时。在此,我们提出一种混合贝叶斯卷积神经网络(Hybrid-BCNN),用于联合预测PA图像和带有误差(不确定性)预测的分割结果。每个输出像素代表一个概率分布,其中误差可以被量化。Hybrid-BCNN使用模拟的PA数据进行训练,并应用于模拟和实验。由于PA图像的稀疏性,分割将Hybrid-BCNN的重点放在最小化具有PA信号区域的损失函数上,以实现更好的预测。结果表明,获得了准确的PA分割结果和图像,并且误差预测与实际误差在统计上高度相关。为了利用误差预测,置信度处理创建了高于特定置信水平的PA图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ec/11424948/584d8a18ed30/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验