Suppr超能文献

用于指导介入手术的实时集成光声和超声(PAUS)成像系统:离体研究

Real-time integrated photoacoustic and ultrasound (PAUS) imaging system to guide interventional procedures: ex vivo study.

作者信息

Wei Chen-Wei, Nguyen Thu-Mai, Xia Jinjun, Arnal Bastien, Wong Emily Y, Pelivanov Ivan M, O'Donnell Matthew

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):319-28. doi: 10.1109/TUFFC.2014.006728.

Abstract

Because of depth-dependent light attenuation, bulky, low-repetition-rate lasers are usually used in most photoacoustic (PA) systems to provide sufficient pulse energies to image at depth within the body. However, integrating these lasers with real-time clinical ultrasound (US) scanners has been problematic because of their size and cost. In this paper, an integrated PA/US (PAUS) imaging system is presented operating at frame rates >30 Hz. By employing a portable, low-cost, low-pulse-energy (2 mJ/pulse), high-repetition-rate (1 kHz), 1053-nm laser, and a rotating galvo-mirror system enabling rapid laser beam scanning over the imaging area, the approach is demonstrated for potential applications requiring a few centimeters of penetration. In particular, we demonstrate here real-time (30 Hz frame rate) imaging (by combining multiple single-shot sub-images covering the scan region) of an 18-gauge needle inserted into a piece of chicken breast with subsequent delivery of an absorptive agent at more than 1-cm depth to mimic PAUS guidance of an interventional procedure. A signal-to-noise ratio of more than 35 dB is obtained for the needle in an imaging area 2.8 × 2.8 cm (depth × lateral). Higher frame rate operation is envisioned with an optimized scanning scheme.

摘要

由于光衰减与深度相关,大多数光声(PA)系统通常使用体积较大、重复频率较低的激光器,以提供足够的脉冲能量来对体内深处进行成像。然而,将这些激光器与实时临床超声(US)扫描仪集成一直存在问题,因为它们的尺寸和成本较高。本文提出了一种帧速率大于30 Hz的集成PA/US(PAUS)成像系统。通过采用便携式、低成本、低脉冲能量(2 mJ/脉冲)、高重复频率(1 kHz)的1053 nm激光器,以及能够在成像区域快速扫描激光束的旋转振镜系统,该方法被证明适用于需要几厘米穿透深度的潜在应用。特别是,我们在此展示了实时(30 Hz帧速率)成像(通过组合覆盖扫描区域的多个单次拍摄子图像),将一根18号针插入一块鸡胸肉中,随后在超过1 cm深度处注入吸收剂,以模拟PAUS对介入手术的引导。在2.8×2.8 cm(深度×横向)的成像区域中,针的信噪比超过35 dB。通过优化扫描方案,可以实现更高的帧速率操作。

相似文献

1
Real-time integrated photoacoustic and ultrasound (PAUS) imaging system to guide interventional procedures: ex vivo study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):319-28. doi: 10.1109/TUFFC.2014.006728.
2
Real-time interleaved photoacoustic/ultrasound (PAUS) imaging for interventional procedure guidance.
Proc SPIE Int Soc Opt Eng. 2015 Feb;9323. doi: 10.1117/12.2084704. Epub 2015 Mar 11.
3
Optimization of the laser irradiation pattern in a high frame rate integrated photoacoustic / ultrasound (PAUS) imaging system.
IEEE Int Ultrason Symp. 2015 Oct;2015. doi: 10.1109/ultsym.2015.0032. Epub 2015 Nov 16.
5
Real-Time Intravascular Ultrasound and Photoacoustic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):141-149. doi: 10.1109/TUFFC.2016.2640952.
6
Coherent photoacoustic-ultrasound correlation and imaging.
IEEE Trans Biomed Eng. 2014 Sep;61(9):2507-2512. doi: 10.1109/TBME.2014.2321007. Epub 2014 Apr 29.
7
An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jan;66(1):45-56. doi: 10.1109/TUFFC.2018.2881409. Epub 2018 Nov 14.
8
3D-visual laser-diode-based photoacoustic imaging.
Opt Express. 2012 Jan 16;20(2):1237-46. doi: 10.1364/OE.20.001237.

引用本文的文献

2
Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Dec;70(12):1591-1606. doi: 10.1109/TUFFC.2023.3329119. Epub 2023 Dec 14.
5
Optimization of the laser irradiation pattern in a high frame rate integrated photoacoustic / ultrasound (PAUS) imaging system.
IEEE Int Ultrason Symp. 2015 Oct;2015. doi: 10.1109/ultsym.2015.0032. Epub 2015 Nov 16.
6
Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the "Scissors" Programming Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jun;69(6):1994-2000. doi: 10.1109/TUFFC.2022.3164371. Epub 2022 May 26.
7
Semantic segmentation of multispectral photoacoustic images using deep learning.
Photoacoustics. 2022 Mar 5;26:100341. doi: 10.1016/j.pacs.2022.100341. eCollection 2022 Jun.
8
Photoacoustic-guided endovenous laser ablation: Characterization and canine study.
Photoacoustics. 2021 Aug 30;24:100298. doi: 10.1016/j.pacs.2021.100298. eCollection 2021 Dec.
9
High-speed photoacoustic microscopy: A review dedicated on light sources.
Photoacoustics. 2021 Aug 6;24:100291. doi: 10.1016/j.pacs.2021.100291. eCollection 2021 Dec.
10
Multiangle Long-Axis Lateral Illumination Photoacoustic Imaging Using Linear Array Transducer.
Sensors (Basel). 2020 Jul 21;20(14):4052. doi: 10.3390/s20144052.

本文引用的文献

1
Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions.
Appl Phys Lett. 2014 Jan 20;104(3):033701. doi: 10.1063/1.4862461. Epub 2014 Jan 21.
2
Acoustic and photoacoustic molecular imaging of cancer.
J Nucl Med. 2013 Nov;54(11):1851-4. doi: 10.2967/jnumed.112.115568.
3
Can molecular imaging enable personalized diagnostics? An example using magnetomotive photoacoustic imaging.
Ann Biomed Eng. 2013 Nov;41(11):2237-47. doi: 10.1007/s10439-013-0901-8. Epub 2013 Aug 27.
5
Real-time handheld multispectral optoacoustic imaging.
Opt Lett. 2013 May 1;38(9):1404-6. doi: 10.1364/OL.38.001404.
7
Video-rate functional photoacoustic microscopy at depths.
J Biomed Opt. 2012 Oct;17(10):106007. doi: 10.1117/1.JBO.17.10.106007.
10
Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto-optical coupled nanoparticles.
Small. 2013 Jun 24;9(12):2046-52, 2045. doi: 10.1002/smll.201202085. Epub 2012 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验