Irreversible Climate Change Research Center, Yonsei University, Seoul, South Korea.
Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea.
Sci Rep. 2021 Jan 29;11(1):2648. doi: 10.1038/s41598-021-81162-2.
Stochastic differential equations (SDEs) are ubiquitous across disciplines, and uncovering SDEs driving observed time series data is a key scientific challenge. Most previous work on this topic has relied on restrictive assumptions, undermining the generality of these approaches. We present a novel technique to uncover driving probabilistic models that is based on kernel density estimation. The approach relies on few assumptions, does not restrict underlying functional forms, and can be used even on non-Markov systems. When applied to El Niño-Southern Oscillation (ENSO), the fitted empirical model simulations can almost perfectly capture key time series properties of ENSO. This confirms that ENSO could be represented as a two-variable stochastic dynamical system. Our experiments provide insights into ENSO dynamics and suggest that state-dependent noise does not play a major role in ENSO skewness. Our method is general and can be used across disciplines for inverse and forward modeling, to shed light on structure of system dynamics and noise, to evaluate system predictability, and to generate synthetic datasets with realistic properties.
随机微分方程 (SDEs) 在各个学科中都普遍存在,揭示驱动观测时间序列数据的 SDEs 是一个关键的科学挑战。在这个主题上的大多数先前工作都依赖于限制性假设,从而破坏了这些方法的通用性。我们提出了一种基于核密度估计的新方法来揭示驱动概率模型。该方法依赖于很少的假设,不限制潜在的函数形式,甚至可以用于非马尔可夫系统。当应用于厄尔尼诺-南方涛动 (ENSO) 时,拟合的经验模型模拟几乎可以完美地捕捉 ENSO 的关键时间序列特性。这证实了 ENSO 可以表示为一个两变量随机动力系统。我们的实验提供了对 ENSO 动力学的深入了解,并表明状态相关噪声在 ENSO 的偏斜度中没有起主要作用。我们的方法具有通用性,可以在各个学科中用于反演和正向建模,以揭示系统动力学和噪声的结构,评估系统的可预测性,并生成具有真实特性的合成数据集。