Suppr超能文献

人类主动脉瓣在发育和儿童终末期先天性主动脉瓣狭窄中的空间 N-糖组学。

Spatial N-glycomics of the human aortic valve in development and pediatric endstage congenital aortic valve stenosis.

机构信息

Department of Cell and Molecular Pharmacology & Experimental Therapeutics; MUSC Proteomics Group; Bruker Clinial Glycomics Center of Excellence, Medical University of South Carolina, Charleston, SC, United States of America.

Department of Cell and Molecular Pharmacology & Experimental Therapeutics; MUSC Proteomics Group; Bruker Clinial Glycomics Center of Excellence, Medical University of South Carolina, Charleston, SC, United States of America.

出版信息

J Mol Cell Cardiol. 2021 May;154:6-20. doi: 10.1016/j.yjmcc.2021.01.001. Epub 2021 Jan 29.

Abstract

Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.

摘要

先天性主动脉瓣狭窄(AS)是由于主动脉瓣叶细胞外基质(ECM)产生失调导致主动脉瓣口狭窄而进展的阻塞性狭窄,导致心力衰竭而无有效治疗方法。糖蛋白和蛋白聚糖分布的变化是 AS 的一个标志,但在分子水平上,瓣膜的碳水化合物含量实际上仍未被描述。虽然几乎所有与狭窄瓣膜建模相关的临床糖蛋白都含有多个 N-糖基化位点,但很少有研究旨在了解 N-糖基化如何在疾病中对瓣膜结构产生影响。在这里,我们测试了儿童先天性主动脉瓣狭窄中 N-聚糖结构的空间定位。该研究针对 0-17 岁的瓣膜组织进行,这些组织具有去识别的临床数据,报告了跨越正常发育、主动脉瓣功能不全(AVI)和儿科终末期 AS 的术前瓣膜功能。高质量精度成像质谱(IMS)用于定位 AV 结构中的 N-聚糖谱。RNA-Seq 用于鉴定 N-聚糖相关酶的调节。发现 N-聚糖在正常主动脉瓣中具有空间定位,与纤维层、海绵层或心室层对齐。在诊断为 AVI 的组织中,N-聚糖定位于肥大的连合处,并且 pauci-mannose 结构增加。在所有瓣膜类型中,唾液酸(N-乙酰神经氨酸)N-聚糖是最丰富的 N-聚糖组。三种唾液酸化 N-聚糖在 AS 中独立于年龄升高。针对瓣膜组织优化的组织化学方法确定,主动脉瓣组织的唾液酸化既显示α2,6 又显示α2,3 连接。专门的酶策略表明,核心岩藻糖基化是主要的岩藻糖构型,定位于正常的纤维层,在 AS 中具有不同的模式。这项研究表明,人类主动脉瓣结构是由 N-糖基化信号空间定义的,可能为人类主动脉瓣疾病的治疗产生新的研究方向。

相似文献

3
8
Plasma N-Glycome Signature of Down Syndrome.唐氏综合征的血浆N-糖组特征
J Proteome Res. 2015 Oct 2;14(10):4232-45. doi: 10.1021/acs.jproteome.5b00356. Epub 2015 Sep 14.

引用本文的文献

7
Focusing on the Native Matrix Proteins in Calcific Aortic Valve Stenosis.关注钙化性主动脉瓣狭窄中的天然基质蛋白
JACC Basic Transl Sci. 2023 Mar 29;8(8):1028-1039. doi: 10.1016/j.jacbts.2023.01.009. eCollection 2023 Aug.
9
Network-Guided Multiomic Mapping of Aortic Valve Calcification.网络引导的主动脉瓣钙化多组学图谱绘制。
Arterioscler Thromb Vasc Biol. 2023 Mar;43(3):417-426. doi: 10.1161/ATVBAHA.122.318334. Epub 2023 Feb 2.

本文引用的文献

3
A Rapid Array-Based Approach to -Glycan Profiling of Cultured Cells.基于快速阵列的方法对培养细胞中的 - 聚糖进行分析。
J Proteome Res. 2019 Oct 4;18(10):3630-3639. doi: 10.1021/acs.jproteome.9b00303. Epub 2019 Sep 19.
4
ST6GAL1: A key player in cancer.ST6GAL1:癌症中的关键因子。
Oncol Lett. 2019 Aug;18(2):983-989. doi: 10.3892/ol.2019.10458. Epub 2019 Jun 7.
5
Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients.马凡综合征患者主动脉细胞外基质的糖蛋白质组学分析。
Arterioscler Thromb Vasc Biol. 2019 Sep;39(9):1859-1873. doi: 10.1161/ATVBAHA.118.312175. Epub 2019 Jul 18.
6
Glycosylation in health and disease.糖基化在健康和疾病中的作用。
Nat Rev Nephrol. 2019 Jun;15(6):346-366. doi: 10.1038/s41581-019-0129-4.
7
Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions.通过 Siglec-唾液酸相互作用调节免疫耐受。
Front Immunol. 2018 Dec 7;9:2807. doi: 10.3389/fimmu.2018.02807. eCollection 2018.
9
Advances in mass spectrometry-based glycomics.基于质谱的糖组学研究进展。
Electrophoresis. 2018 Dec;39(24):3063-3081. doi: 10.1002/elps.201800273. Epub 2018 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验