Suppr超能文献

基于希尔伯特变换的呼吸时间序列处理方法。

A Hilbert-based method for processing respiratory timeseries.

机构信息

Translational Neuromodeling Unit, University of Zurich & ETH Zurich, Zurich, Switzerland; FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.

Translational Neuromodeling Unit, University of Zurich & ETH Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.

出版信息

Neuroimage. 2021 Apr 15;230:117787. doi: 10.1016/j.neuroimage.2021.117787. Epub 2021 Jan 28.

Abstract

In this technical note, we introduce a new method for estimating changes in respiratory volume per unit time (RVT) from respiratory bellows recordings. By using techniques from the electrophysiological literature, in particular the Hilbert transform, we show how we can better characterise breathing rhythms, with the goal of improving physiological noise correction in functional magnetic resonance imaging (fMRI). Specifically, our approach leads to a representation with higher time resolution and better captures atypical breathing events than current peak-based RVT estimators. Finally, we demonstrate that this leads to an increase in the amount of respiration-related variance removed from fMRI data when used as part of a typical preprocessing pipeline. Our implementation is publicly available as part of the PhysIO package, which is distributed as part of the open-source TAPAS toolbox (https://translationalneuromodeling.org/tapas).

摘要

在本技术说明中,我们介绍了一种从呼吸风箱记录估计单位时间呼吸量 (RVT) 变化的新方法。通过使用电生理学文献中的技术,特别是希尔伯特变换,我们展示了如何更好地描述呼吸节律,目标是改进功能磁共振成像 (fMRI) 中的生理噪声校正。具体来说,我们的方法导致了具有更高时间分辨率的表示形式,并且比当前基于峰值的 RVT 估计器更好地捕获非典型呼吸事件。最后,我们证明当作为典型预处理管道的一部分使用时,这会导致从 fMRI 数据中去除与呼吸相关的方差量增加。我们的实现作为 PhysIO 包的一部分是公开可用的,该包作为开源 TAPAS 工具箱的一部分发布(https://translationalneuromodeling.org/tapas)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验