Pernet Cyril R, Martinez-Cancino Ramon, Truong Dung, Makeig Scott, Delorme Arnaud
Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
Swartz Center for Computational Neurosciences, University of California, San Diego, San Diego, CA, United States.
Front Neurosci. 2021 Jan 11;14:610388. doi: 10.3389/fnins.2020.610388. eCollection 2020.
Reproducibility is a cornerstone of scientific communication without which one cannot build upon each other's work. Because modern human brain imaging relies on many integrated steps with a variety of possible algorithms, it has, however, become impossible to report every detail of a data processing workflow. In response to this analytical complexity, community recommendations are to share data analysis pipelines (scripts that implement workflows). Here we show that this can easily be done using EEGLAB and tools built around it. BIDS tools allow importing all the necessary information and create a study from electroencephalography (EEG)-Brain Imaging Data Structure compliant data. From there preprocessing can be carried out in only a few steps using EEGLAB and statistical analyses performed using the LIMO EEG plug-in. Using Wakeman and Henson (2015) face dataset, we illustrate how to prepare data and build different statistical models, a standard factorial design (faces repetition), and a more modern trial-based regression approach for the stimulus repetition effect, all in a few reproducible command lines.
可重复性是科学交流的基石,没有它,就无法在彼此的工作基础上进行拓展。然而,由于现代人类脑成像依赖于许多相互关联的步骤以及各种可能的算法,因此报告数据处理工作流程的每一个细节已变得不可能。针对这种分析复杂性,社区建议共享数据分析管道(实现工作流程的脚本)。在这里,我们展示了使用EEGLAB及其周围构建的工具可以轻松做到这一点。BIDS工具允许导入所有必要信息,并根据符合脑电图(EEG)-脑成像数据结构的数据创建一项研究。从那里开始,仅需使用EEGLAB执行几个步骤即可进行预处理,并使用LIMO EEG插件进行统计分析。使用Wakeman和Henson(2015年)的面部数据集,我们说明了如何在几个可重复的命令行中准备数据并构建不同的统计模型,一个标准的析因设计(面部×重复),以及一种更现代的基于试验的回归方法来研究刺激重复效应。