Suppr超能文献

抗胆碱能症状是否是老年多病共存全科患者跌倒的危险因素?一个预测模型的开发与验证研究方案。

Are Anticholinergic Symptoms a Risk Factor for Falls in Older General Practice Patients With Polypharmacy? Study Protocol for the Development and Validation of a Prognostic Model.

作者信息

Dinh Truc Sophia, González-González Ana Isabel, Meid Andreas D, Snell Kym I E, Rudolf Henrik, Brueckle Maria-Sophie, Blom Jeanet W, Thiem Ulrich, Trampisch Hans-Joachim, Elders Petra J M, Donner-Banzhoff Norbert, Gerlach Ferdinand M, Harder Sebastian, van den Akker Marjan, Glasziou Paul P, Haefeli Walter E, Muth Christiane

机构信息

Institute of General Practice, Goethe-University Frankfurt, Frankfurt, Germany.

Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Madrid, Spain.

出版信息

Front Pharmacol. 2021 Jan 14;11:577747. doi: 10.3389/fphar.2020.577747. eCollection 2020.

Abstract

: Cumulative anticholinergic exposure, also known as anticholinergic burden, is associated with a variety of adverse outcomes. However, studies show that anticholinergic effects tend to be underestimated by prescribers, and anticholinergics are the most frequently prescribed potentially inappropriate medication in older patients. The grading systems and drugs included in existing scales to quantify anticholinergic burden differ considerably and do not adequately account for patients' susceptibility to medications. Furthermore, their ability to link anticholinergic burden with adverse outcomes such as falls is unclear. This study aims to develop a prognostic model that predicts falls in older general practice patients, to assess the performance of several anticholinergic burden scales, and to quantify the added predictive value of anticholinergic symptoms in this context. : Data from two cluster-randomized controlled trials investigating medication optimization in older general practice patients in Germany will be used. One trial (RIME, n = 1,197) will be used for the model development and the other trial (PRIMUM, n = 502) will be used to externally validate the model. A priori, candidate predictors will be selected based on a literature search, predictor availability, and clinical reasoning. Candidate predictors will include socio-demographics (e.g. age, sex), morbidity (e.g. single conditions), medication (e.g. polypharmacy, anticholinergic burden as defined by scales), and well-being (e.g. quality of life, physical function). A prognostic model including sociodemographic and lifestyle-related factors, as well as variables on morbidity, medication, health status, and well-being, will be developed, whereby the prognostic value of extending the model to include additional patient-reported symptoms will be also assessed. Logistic regression will be used for the binary outcome, which will be defined as "no falls" vs. "≥1 fall" within six months of baseline, as reported in patient interviews. : As the ability of different anticholinergic burden scales to predict falls in older patients is unclear, this study may provide insights into their relative importance as well as into the overall contribution of anticholinergic symptoms and other patient characteristics. The results may support general practitioners in their clinical decision-making and in prescribing fewer medications with anticholinergic properties.

摘要

累积抗胆碱能药物暴露,也称为抗胆碱能负担,与多种不良后果相关。然而,研究表明,开处方者往往低估了抗胆碱能药物的作用,而且抗胆碱能药物是老年患者中最常被开具的潜在不适当药物。现有用于量化抗胆碱能负担的量表所包含的分级系统和药物差异很大,并且没有充分考虑患者对药物的易感性。此外,它们将抗胆碱能负担与跌倒等不良后果联系起来的能力尚不清楚。本研究旨在开发一种预测老年全科患者跌倒的预后模型,评估几种抗胆碱能负担量表的性能,并在此背景下量化抗胆碱能症状的额外预测价值。

将使用来自两项在德国老年全科患者中研究药物优化的整群随机对照试验的数据。一项试验(RIME,n = 1197)将用于模型开发,另一项试验(PRIMUM,n = 502)将用于外部验证该模型。事先,将根据文献检索、预测变量的可用性和临床推理来选择候选预测变量。候选预测变量将包括社会人口统计学特征(如年龄、性别)、发病率(如单一疾病)、用药情况(如多重用药、量表定义的抗胆碱能负担)和健康状况(如生活质量、身体功能)。将开发一个包括社会人口统计学和生活方式相关因素以及发病率、用药情况、健康状况和健康状况变量的预后模型,同时还将评估扩展模型以纳入其他患者报告症状的预后价值。将使用逻辑回归分析二元结局,该结局将根据患者访谈报告,定义为基线后六个月内“无跌倒”与“≥1次跌倒”。

由于不同抗胆碱能负担量表预测老年患者跌倒的能力尚不清楚,本研究可能会深入了解它们的相对重要性以及抗胆碱能症状和其他患者特征的总体贡献。研究结果可能会支持全科医生进行临床决策,并减少开具具有抗胆碱能特性的药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验