Merzouki Aziza, Estill Janne, Orel Erol, Tal Kali, Keiser Olivia
Institute of Global Health, University of Geneva, Geneva, Switzerland.
Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland.
PeerJ. 2021 Jan 15;9:e10660. doi: 10.7717/peerj.10660. eCollection 2021.
HIV incidence varies widely between sub-Saharan African (SSA) countries. This variation coincides with a substantial sociobehavioural heterogeneity, which complicates the design of effective interventions. In this study, we investigated how sociobehavioural heterogeneity in sub-Saharan Africa could account for the variance of HIV incidence between countries.
We analysed aggregated data, at the national-level, from the most recent Demographic and Health Surveys of 29 SSA countries (2010-2017), which included 594,644 persons (183,310 men and 411,334 women). We preselected 48 demographic, socio-economic, behavioural and HIV-related attributes to describe each country. We used Principal Component Analysis to visualize sociobehavioural similarity between countries, and to identify the variables that accounted for most sociobehavioural variance in SSA. We used hierarchical clustering to identify groups of countries with similar sociobehavioural profiles, and we compared the distribution of HIV incidence (estimates from UNAIDS) and sociobehavioural variables within each cluster.
The most important characteristics, which explained 69% of sociobehavioural variance across SSA among the variables we assessed were: religion; male circumcision; number of sexual partners; literacy; uptake of HIV testing; women's empowerment; accepting attitude toward people living with HIV/AIDS; rurality; ART coverage; and, knowledge about AIDS. Our model revealed three groups of countries, each with characteristic sociobehavioural profiles. HIV incidence was mostly similar within each cluster and different between clusters (median (IQR); 0.5/1000 (0.6/1000), 1.8/1000 (1.3/1000) and 5.0/1000 (4.2/1000)).
Our findings suggest that the combination of sociobehavioural factors play a key role in determining the course of the HIV epidemic, and that similar techniques can help to predict the effects of behavioural change on the HIV epidemic and to design targeted interventions to impede HIV transmission in SSA.
撒哈拉以南非洲(SSA)国家之间的艾滋病毒发病率差异很大。这种差异与社会行为的显著异质性相吻合,这使得有效干预措施的设计变得复杂。在本研究中,我们调查了撒哈拉以南非洲的社会行为异质性如何解释各国之间艾滋病毒发病率的差异。
我们分析了来自29个SSA国家(2010 - 2017年)最新人口与健康调查的国家级汇总数据,其中包括594,644人(183,310名男性和411,334名女性)。我们预先选择了48个人口、社会经济、行为和与艾滋病毒相关的属性来描述每个国家。我们使用主成分分析来可视化各国之间的社会行为相似性,并确定解释SSA中大部分社会行为差异的变量。我们使用层次聚类来识别具有相似社会行为特征的国家群体,并比较每个集群内艾滋病毒发病率(来自联合国艾滋病规划署的估计)和社会行为变量的分布。
在我们评估的变量中,解释了SSA地区69%社会行为差异的最重要特征是:宗教;男性包皮环切术;性伴侣数量;识字率;艾滋病毒检测的接受程度;妇女赋权;对艾滋病毒/艾滋病感染者的接受态度;农村地区;抗逆转录病毒治疗覆盖率;以及对艾滋病的了解。我们的模型揭示了三组国家,每组都有各自独特的社会行为特征。艾滋病毒发病率在每个集群内大多相似,而在不同集群之间则有所不同(中位数(四分位距);0.5/1000(0.6/1000),1.8/1000(1.3/1000)和5.0/1000(4.2/1000))。
我们的研究结果表明,社会行为因素的组合在决定艾滋病毒疫情的发展过程中起着关键作用,并且类似的技术可以帮助预测行为变化对艾滋病毒疫情的影响,并设计有针对性的干预措施来阻止SSA地区的艾滋病毒传播。