Redhwan Saleh S, Abdo Mohammed S, Shah Kamal, Abdeljawad Thabet, Dawood S, Abdo Hakim A, Shaikh Sadikali L
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, (M.S), India.
Department of Mathematics, Hodeidah University, Al-Hodeidah, Yemen.
Results Phys. 2020 Dec;19:103610. doi: 10.1016/j.rinp.2020.103610. Epub 2020 Nov 16.
A mathematical model for the spread of the COVID-19 disease based on a fractional Atangana-Baleanu operator is studied. Some fixed point theorems and generalized Gronwall inequality through the AB fractional integral are applied to obtain the existence and stability results. The fractional Adams-Bashforth is used to discuss the corresponding numerical results. A numerical simulation is presented to show the behavior of the approximate solution in terms of graphs of the spread of COVID-19 in the Chinese city of Wuhan. We simulate our table for the data of Wuhan from February 15, 2020 to April 25, 2020 for 70 days. Finally, we present a debate about the followed simulation in characterizing how the transmission dynamics of infection can take place in society.
研究了基于分数阶阿坦加纳-巴莱努算子的COVID-19疾病传播数学模型。应用了一些不动点定理和通过AB分数积分的广义格朗沃尔不等式来获得存在性和稳定性结果。使用分数阶亚当斯-巴什福思方法来讨论相应的数值结果。给出了一个数值模拟,以根据中国武汉市COVID-19传播的图表展示近似解的行为。我们针对2020年2月15日至2020年4月25日共70天的武汉市数据模拟了表格。最后,我们对后续模拟进行了讨论,该模拟刻画了感染传播动力学在社会中是如何发生的。