Suppr超能文献

一种使用惯性测量单元(IMU)传感器对主要游泳技术中的游泳动作进行分析的新型宏观-微观方法。

A Novel Macro-Micro Approach for Swimming Analysis in Main Swimming Techniques Using IMU Sensors.

作者信息

Hamidi Rad Mahdi, Gremeaux Vincent, Dadashi Farzin, Aminian Kamiar

机构信息

Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.

出版信息

Front Bioeng Biotechnol. 2021 Jan 14;8:597738. doi: 10.3389/fbioe.2020.597738. eCollection 2020.

Abstract

Inertial measurement units (IMU) are proven as efficient tools for swimming analysis by overcoming the limits of video-based systems application in aquatic environments. However, coaches still believe in the lack of a reliable and easy-to-use analysis system for swimming. To provide a broad view of swimmers' performance, this paper describes a new macro-micro analysis approach, comprehensive enough to cover a full training session, regardless of the swimming technique. Seventeen national level swimmers (5 females, 12 males, 19.6 ± 2.1 yrs) were equipped with six IMUs and asked to swim 4 × 50 m trials in each swimming technique (i.e., frontcrawl, breaststroke, butterfly, and backstroke) in a 25 m pool, in front of five 2-D cameras (four under water and one over water) for validation. The proposed approach detects swimming bouts, laps, and swimming technique in macro level and swimming phases in micro level on all sensor locations for comparison. Swimming phases are the phases swimmers pass from wall to wall (wall push-off, glide, strokes preparation, swimming, and turn) and micro analysis detects the beginning of each phase. For macro analysis, an overall accuracy range of 0.83-0.98, 0.80-1.00, and 0.83-0.99 were achieved, respectively, for swimming bouts detection, laps detection and swimming technique identification on selected sensor locations, the highest being achieved with sacrum. For micro analysis, we obtained the lowest error mean and standard deviation on sacrum for the beginning of wall-push off, glide and turn (-20 ± 89 ms, 4 ± 100 ms, 23 ± 97 ms, respectively), on shank for the beginning of strokes preparation (0 ± 88 ms) and on wrist for the beginning of swimming (-42 ± 72 ms). Comparing the swimming techniques, sacrum sensor achieves the smallest range of error mean and standard deviation during micro analysis. By using the same macro-micro approach across different swimming techniques, this study shows its efficiency to detect the main events and phases of a training session. Moreover, comparing the results of both macro and micro analyses, sacrum has achieved relatively higher amounts of accuracy and lower mean and standard deviation of error in all swimming techniques.

摘要

惯性测量单元(IMU)已被证明是游泳分析的有效工具,它克服了基于视频的系统在水生环境中应用的局限性。然而,教练们仍然认为缺乏一种可靠且易于使用的游泳分析系统。为了全面了解游泳运动员的表现,本文描述了一种新的宏观 - 微观分析方法,该方法足够全面,可以涵盖整个训练课程,而不论游泳技术如何。17名国家级游泳运动员(5名女性,12名男性,年龄19.6±2.1岁)配备了六个IMU,并被要求在25米游泳池中,在五个二维摄像机(四个水下和一个水上)前,以每种游泳技术(即自由泳、蛙泳、蝶泳和仰泳)进行4×50米的测试,以进行验证。所提出的方法在宏观层面检测游泳回合、圈数和游泳技术,在微观层面检测所有传感器位置的游泳阶段以进行比较。游泳阶段是游泳运动员从池壁到池壁所经过的阶段(池壁蹬离、滑行、划水准备、游泳和转身),微观分析检测每个阶段的开始。对于宏观分析,在选定的传感器位置上,游泳回合检测、圈数检测和游泳技术识别的总体准确率范围分别为0.83 - 0.98、0.80 - 1.00和0.83 - 0.99,其中骶骨位置的准确率最高。对于微观分析,我们在骶骨位置获得了池壁蹬离、滑行和转身开始时的最低误差均值和标准差(分别为 - 20±89毫秒、4±100毫秒、23±97毫秒),在小腿位置获得了划水准备开始时的最低误差均值和标准差(0±88毫秒),在手腕位置获得了游泳开始时的最低误差均值和标准差( - 42±72毫秒)。比较不同游泳技术,骶骨传感器在微观分析期间实现了最小的误差均值和标准差范围。通过在不同游泳技术中使用相同的宏观 - 微观方法,本研究展示了其检测训练课程主要事件和阶段的效率。此外,比较宏观和微观分析的结果,骶骨在所有游泳技术中都获得了相对较高的准确率以及较低的误差均值和标准差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1026/7841373/aa6c9d2a8e46/fbioe-08-597738-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验