Suppr超能文献

脑肿瘤患者基于特征的PET/MRI影像组学

Feature-based PET/MRI radiomics in patients with brain tumors.

作者信息

Lohmann Philipp, Meißner Anna-Katharina, Kocher Martin, Bauer Elena K, Werner Jan-Michael, Fink Gereon R, Shah Nadim J, Langen Karl-Josef, Galldiks Norbert

机构信息

Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, Juelich, Germany.

Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.

出版信息

Neurooncol Adv. 2021 Jan 23;2(Suppl 4):iv15-iv21. doi: 10.1093/noajnl/vdaa118. eCollection 2020 Dec.

Abstract

Radiomics allows the extraction of quantitative features from medical images such as CT, MRI, or PET, thereby providing additional, potentially relevant diagnostic information for clinical decision-making. Because the computation of these features is performed highly automated on medical images acquired during routine follow-up, radiomics offers this information at low cost. Further, the radiomics features can be used alone or combined with other clinical or histomolecular parameters to generate predictive or prognostic mathematical models. These models can then be applied for various important diagnostic indications in neuro-oncology, for example, to noninvasively predict relevant biomarkers in glioma patients, to differentiate between treatment-related changes and local brain tumor relapse, or to predict treatment response. In recent years, amino acid PET has become an important diagnostic tool in patients with brain tumors. Therefore, the number of studies in patients with brain tumors investigating the potential of PET radiomics or combined PET/MRI radiomics is steadily increasing. This review summarizes current research regarding feature-based PET as well as combined PET/MRI radiomics in neuro-oncology.

摘要

放射组学能够从诸如CT、MRI或PET等医学图像中提取定量特征,从而为临床决策提供额外的、可能相关的诊断信息。由于这些特征的计算是在常规随访期间获取的医学图像上高度自动化进行的,放射组学能够以低成本提供这些信息。此外,放射组学特征可以单独使用,也可以与其他临床或组织分子参数相结合,以生成预测性或预后性数学模型。然后,这些模型可应用于神经肿瘤学的各种重要诊断指征,例如,无创预测胶质瘤患者的相关生物标志物,区分治疗相关变化和局部脑肿瘤复发,或预测治疗反应。近年来,氨基酸PET已成为脑肿瘤患者的重要诊断工具。因此,研究脑肿瘤患者PET放射组学或联合PET/MRI放射组学潜力的研究数量正在稳步增加。本综述总结了神经肿瘤学中基于特征的PET以及联合PET/MRI放射组学的当前研究。

相似文献

1
Feature-based PET/MRI radiomics in patients with brain tumors.
Neurooncol Adv. 2021 Jan 23;2(Suppl 4):iv15-iv21. doi: 10.1093/noajnl/vdaa118. eCollection 2020 Dec.
2
Radiomics in neuro-oncology: Basics, workflow, and applications.
Methods. 2021 Apr;188:112-121. doi: 10.1016/j.ymeth.2020.06.003. Epub 2020 Jun 6.
3
PET/MRI Radiomics in Patients With Brain Metastases.
Front Neurol. 2020 Feb 7;11:1. doi: 10.3389/fneur.2020.00001. eCollection 2020.
4
Radiomics derived from amino-acid PET and conventional MRI in patients with high-grade gliomas.
Q J Nucl Med Mol Imaging. 2018 Sep;62(3):272-280. doi: 10.23736/S1824-4785.18.03095-9. Epub 2018 Jun 4.
5
Radiomics and artificial intelligence applications in pediatric brain tumors.
World J Pediatr. 2024 Aug;20(8):747-763. doi: 10.1007/s12519-024-00823-0. Epub 2024 Jun 27.
6
Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients.
Cancers (Basel). 2021 Feb 5;13(4):647. doi: 10.3390/cancers13040647.
8
Radiomics in radiation oncology-basics, methods, and limitations.
Strahlenther Onkol. 2020 Oct;196(10):848-855. doi: 10.1007/s00066-020-01663-3. Epub 2020 Jul 9.
10
AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics.
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2673-2699. doi: 10.1007/s00259-019-04414-4. Epub 2019 Jul 11.

引用本文的文献

2
Comparison of PET/CT and PET/MRI in central nervous system tumors, a narrative review.
Int J Physiol Pathophysiol Pharmacol. 2024 Aug 25;16(4):89-95. doi: 10.62347/UMDS1961. eCollection 2024.
4
Evolution and implementation of radiographic response criteria in neuro-oncology.
Neurooncol Adv. 2023 Sep 13;5(1):vdad118. doi: 10.1093/noajnl/vdad118. eCollection 2023 Jan-Dec.
6
Feasibility of radiomic feature harmonization for pooling of [F]FET or [F]GE-180 PET images of gliomas.
Z Med Phys. 2023 Feb;33(1):91-102. doi: 10.1016/j.zemedi.2022.12.005. Epub 2023 Jan 27.
7
Amino Acid Tracer PET MRI in Glioma Management: What a Neuroradiologist Needs to Know.
AJNR Am J Neuroradiol. 2023 Mar;44(3):236-246. doi: 10.3174/ajnr.A7762. Epub 2023 Jan 19.
8
Can Radiomics Provide Additional Information in [F]FET-Negative Gliomas?
Cancers (Basel). 2022 Oct 5;14(19):4860. doi: 10.3390/cancers14194860.
10
Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition.
Int J Mol Sci. 2021 Dec 10;22(24):13278. doi: 10.3390/ijms222413278.

本文引用的文献

1
Current status of PET imaging in neuro-oncology.
Neurooncol Adv. 2019 May 28;1(1):vdz010. doi: 10.1093/noajnl/vdz010. eCollection 2019 May-Dec.
3
4
Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric F-FET PET-MRI and MR Fingerprinting.
Eur J Nucl Med Mol Imaging. 2020 Jun;47(6):1435-1445. doi: 10.1007/s00259-019-04602-2. Epub 2019 Dec 6.
6
Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model.
Eur J Nucl Med Mol Imaging. 2020 Jun;47(6):1400-1411. doi: 10.1007/s00259-019-04604-0. Epub 2019 Nov 26.
8
9
Radiomics signature based on FDG-PET predicts proliferative activity in primary glioma.
Clin Radiol. 2019 Oct;74(10):815.e15-815.e23. doi: 10.1016/j.crad.2019.06.019. Epub 2019 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验