Suppr超能文献

使用神经癌症成像组学工具包(neuro-CaPTk)对胶质瘤中的、1p/19q和EGFRvIII进行多机构非侵入性体内特征分析。

Multi-institutional noninvasive in vivo characterization of , 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk).

作者信息

Rathore Saima, Mohan Suyash, Bakas Spyridon, Sako Chiharu, Badve Chaitra, Pati Sarthak, Singh Ashish, Bounias Dimitrios, Ngo Phuc, Akbari Hamed, Gastounioti Aimilia, Bergman Mark, Bilello Michel, Shinohara Russell T, Yushkevich Paul, O'Rourke Donald M, Sloan Andrew E, Kontos Despina, Nasrallah MacLean P, Barnholtz-Sloan Jill S, Davatzikos Christos

机构信息

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Neurooncol Adv. 2021 Jan 23;2(Suppl 4):iv22-iv34. doi: 10.1093/noajnl/vdaa128. eCollection 2020 Dec.

Abstract

BACKGROUND

Gliomas represent a biologically heterogeneous group of primary brain tumors with uncontrolled cellular proliferation and diffuse infiltration that renders them almost incurable, thereby leading to a grim prognosis. Recent comprehensive genomic profiling has greatly elucidated the molecular hallmarks of gliomas, including the mutations in and ( and ), loss of chromosomes 1p and 19q (1p/19q), and epidermal growth factor receptor variant III (EGFRvIII). Detection of these molecular alterations is based on ex vivo analysis of surgically resected tissue specimen that sometimes is not adequate for testing and/or does not capture the spatial tumor heterogeneity of the neoplasm.

METHODS

We developed a method for detection of radiogenomic markers of both in lower-grade gliomas (WHO grade II and III tumors) and glioblastoma (WHO grade IV), 1p/19q in -mutant lower-grade gliomas, and EGFRvIII in glioblastoma. Preoperative MRIs of 473 glioma patients from 3 of the studies participating in the ReSPOND consortium (collection I: Hospital of the University of Pennsylvania [HUP: = 248], collection II: The Cancer Imaging Archive [TCIA; = 192], and collection III: Ohio Brain Tumor Study [OBTS, = 33]) were collected. Neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk), a modular platform available for cancer imaging analytics and machine learning, was leveraged to extract histogram, shape, anatomical, and texture features from delineated tumor subregions and to integrate these features using support vector machine to generate models predictive of , 1p/19q, and EGFRvIII. The models were validated using 3 configurations: (1) 70-30% training-testing splits or 10-fold cross-validation within individual collections, (2) 70-30% training-testing splits within merged collections, and (3) training on one collection and testing on another.

RESULTS

These models achieved a classification accuracy of 86.74% (HUP), 85.45% (TCIA), and 75.15% (TCIA) in identifying EGFRvIII, , and 1p/19q, respectively, in configuration I. The model, when applied on combined data in configuration II, yielded a classification success rate of 82.50% in predicting mutation (HUP + TCIA + OBTS). The model when trained on TCIA dataset yielded classification accuracy of 84.88% in predicting in HUP dataset.

CONCLUSIONS

Using machine learning algorithms, high accuracy was achieved in the prediction of , 1p/19q, and EGFRvIII mutation. Neuro-CaPTk encompasses all the pipelines required to replicate these analyses in multi-institutional settings and could also be used for other radio(geno)mic analyses.

摘要

背景

胶质瘤是一组生物学上异质性的原发性脑肿瘤,具有不受控制的细胞增殖和弥漫性浸润,这使得它们几乎无法治愈,从而导致预后严峻。最近的综合基因组分析极大地阐明了胶质瘤的分子特征,包括 和 (和 )的突变、染色体1p和19q缺失(1p/19q)以及表皮生长因子受体变异体III(EGFRvIII)。这些分子改变的检测基于对手术切除的组织标本的离体分析,而这些标本有时不足以进行检测和/或无法捕捉肿瘤的空间异质性。

方法

我们开发了一种方法,用于在低级别胶质瘤(世界卫生组织II级和III级肿瘤)和胶质母细胞瘤(世界卫生组织IV级)中检测 放射性基因组标志物、在 -突变型低级别胶质瘤中检测1p/19q以及在胶质母细胞瘤中检测EGFRvIII。收集了参与ReSPOND联盟的3项研究中473例胶质瘤患者的术前磁共振成像(MRI)(数据集I:宾夕法尼亚大学医院 [HUP: = 248],数据集II:癌症影像存档 [TCIA; = 192],数据集III:俄亥俄脑肿瘤研究 [OBTS, = 33])。利用神经癌症影像表型组学工具包(neuro-CaPTk),这是一个可用于癌症影像分析和机器学习的模块化平台,从划定的肿瘤亚区域中提取直方图、形状、解剖学和纹理特征,并使用支持向量机整合这些特征,以生成预测 、1p/19q和EGFRvIII的模型。这些模型通过3种配置进行验证:(1)在各个数据集中进行70 - 30%的训练 - 测试分割或10折交叉验证,(2)在合并数据集中进行70 - 30%的训练 - 测试分割,以及(3)在一个数据集上训练并在另一个数据集上测试。

结果

在配置I中,这些模型在识别EGFRvIII、 和1p/19q时的分类准确率分别为86.74%(HUP)、85.45%(TCIA)和75.15%(TCIA)。当在配置II中应用于组合数据时,该模型在预测 突变(HUP + TCIA + OBTS)方面的分类成功率为82.50%。当在TCIA数据集上训练时,该模型在预测HUP数据集中的 时的分类准确率为84.88%。

结论

使用机器学习算法,在预测 、1p/19q和EGFRvIII突变方面取得了高精度。Neuro-CaPTk涵盖了在多机构环境中复制这些分析所需的所有流程,也可用于其他放射(基因)组学分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73b2/7829474/33b57dffba59/vdaa128_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验