Suppr超能文献

贝叶斯联合尖峰和平板图形拉索

Bayesian Joint Spike-and-Slab Graphical Lasso.

作者信息

Richard Li Zehang, McCormick Tyler H, Clark Samuel J

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.

Department of Statistics, University of Washington, Seattle, Washington, USA.

出版信息

Proc Mach Learn Res. 2019 Jun;97:3877-3885.

Abstract

In this article, we propose a new class of priors for Bayesian inference with multiple Gaussian graphical models. We introduce Bayesian treatments of two popular procedures, the group graphical lasso and the fused graphical lasso, and extend them to a continuous spike-and-slab framework to allow self-adaptive shrinkage and model selection simultaneously. We develop an EM algorithm that performs fast and dynamic explorations of posterior modes. Our approach selects sparse models efficiently and automatically with substantially smaller bias than would be induced by alternative regularization procedures. The performance of the proposed methods are demonstrated through simulation and two real data examples.

摘要

在本文中,我们为具有多个高斯图形模型的贝叶斯推断提出了一类新的先验。我们介绍了两种流行方法(组图形套索和融合图形套索)的贝叶斯处理方式,并将它们扩展到连续的尖峰和平板框架,以同时实现自适应收缩和模型选择。我们开发了一种期望最大化(EM)算法,该算法能对后验模式进行快速且动态的探索。我们的方法能高效且自动地选择稀疏模型,其偏差比其他正则化方法所导致的偏差要小得多。通过模拟和两个实际数据示例展示了所提方法的性能。

相似文献

1
Bayesian Joint Spike-and-Slab Graphical Lasso.
Proc Mach Learn Res. 2019 Jun;97:3877-3885.
2
Bayesian sparse graphical models and their mixtures.
Stat. 2014 Jan 1;3(1):109-125. doi: 10.1002/sta4.49.
3
The spike-and-slab quantile LASSO for robust variable selection in cancer genomics studies.
Stat Med. 2024 Nov 20;43(26):4928-4983. doi: 10.1002/sim.10196. Epub 2024 Sep 11.
4
The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems.
J Appl Stat. 2023 Sep 14;51(11):2039-2061. doi: 10.1080/02664763.2023.2258301. eCollection 2024.
5
An Expectation Conditional Maximization approach for Gaussian graphical models.
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.
6
Regularized estimation of large-scale gene association networks using graphical Gaussian models.
BMC Bioinformatics. 2009 Nov 24;10:384. doi: 10.1186/1471-2105-10-384.
7
Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration.
PLoS One. 2020 Oct 26;15(10):e0241197. doi: 10.1371/journal.pone.0241197. eCollection 2020.
8
The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
Genetics. 2017 Jan;205(1):77-88. doi: 10.1534/genetics.116.192195. Epub 2016 Oct 31.
9
Generalized cumulative shrinkage process priors with applications to sparse Bayesian factor analysis.
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220148. doi: 10.1098/rsta.2022.0148. Epub 2023 Mar 27.
10
Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.
Stat Interface. 2013 Oct 1;6(4):547-558. doi: 10.4310/SII.2013.v6.n4.a12.

引用本文的文献

1
A probabilistic modeling framework for genomic networks incorporating sample heterogeneity.
Cell Rep Methods. 2025 Feb 24;5(2):100984. doi: 10.1016/j.crmeth.2025.100984. Epub 2025 Feb 14.
2
A modeling framework for detecting and leveraging node-level information in Bayesian network inference.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae021.
3
StabJGL: a stability approach to sparsity and similarity selection in multiple-network reconstruction.
Bioinform Adv. 2023 Dec 19;3(1):vbad185. doi: 10.1093/bioadv/vbad185. eCollection 2023.
5
Bayesian hierarchical factor regression models to infer cause of death from verbal autopsy data.
J R Stat Soc Ser C Appl Stat. 2021 Jun;70(3):532-557. doi: 10.1111/rssc.12468. Epub 2021 Feb 23.

本文引用的文献

1
A BAYESIAN GRAPHICAL MODEL FOR GENOME-WIDE ASSOCIATION STUDIES (GWAS).
Ann Appl Stat. 2016 Jun;10(2):786-811. doi: 10.1214/16-aoas909. Epub 2016 Jul 22.
2
Using Bayesian Latent Gaussian Graphical Models to Infer Symptom Associations in Verbal Autopsies.
Bayesian Anal. 2020 Sep;15(3):781-807. doi: 10.1214/19-ba1172. Epub 2019 Sep 24.
3
An Expectation Conditional Maximization approach for Gaussian graphical models.
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.
5
Joint Estimation of Precision Matrices in Heterogeneous Populations.
Electron J Stat. 2016;10(1):1341-1392. doi: 10.1214/16-EJS1137. Epub 2016 May 31.
6
On joint estimation of Gaussian graphical models for spatial and temporal data.
Biometrics. 2017 Sep;73(3):769-779. doi: 10.1111/biom.12650. Epub 2017 Jan 18.
7
Probabilistic Cause-of-death Assignment using Verbal Autopsies.
J Am Stat Assoc. 2016;111(515):1036-1049. doi: 10.1080/01621459.2016.1152191. Epub 2016 Oct 18.
8
A shortened verbal autopsy instrument for use in routine mortality surveillance systems.
BMC Med. 2015 Dec 16;13:302. doi: 10.1186/s12916-015-0528-8.
9
Bayesian Inference of Multiple Gaussian Graphical Models.
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.
10
Bayesian hierarchical structured variable selection methods with application to MIP studies in breast cancer.
J R Stat Soc Ser C Appl Stat. 2014 Aug;63(4):595-620. doi: 10.1111/rssc.12053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验