Suppr超能文献

广义累积收缩先验及其在稀疏贝叶斯因子分析中的应用。

Generalized cumulative shrinkage process priors with applications to sparse Bayesian factor analysis.

机构信息

Department of Finance, Accounting and Statistics, Institute for Statistics and Mathematics, WU Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220148. doi: 10.1098/rsta.2022.0148. Epub 2023 Mar 27.

Abstract

The paper discusses shrinkage priors which impose increasing shrinkage in a sequence of parameters. We review the cumulative shrinkage process (CUSP) prior of Legramanti (Legramanti . 2020 , 745-752. (doi:10.1093/biomet/asaa008)), which is a spike-and-slab shrinkage prior where the spike probability is stochastically increasing and constructed from the stick-breaking representation of a Dirichlet process prior. As a first contribution, this CUSP prior is extended by involving arbitrary stick-breaking representations arising from beta distributions. As a second contribution, we prove that exchangeable spike-and-slab priors, which are popular and widely used in sparse Bayesian factor analysis, can be represented as a finite generalized CUSP prior, which is easily obtained from the decreasing order statistics of the slab probabilities. Hence, exchangeable spike-and-slab shrinkage priors imply increasing shrinkage as the column index in the loading matrix increases, without imposing explicit order constraints on the slab probabilities. An application to sparse Bayesian factor analysis illustrates the usefulness of the findings of this paper. A new exchangeable spike-and-slab shrinkage prior based on the triple gamma prior of Cadonna (Cadonna . 2020 , 20. (doi:10.3390/econometrics8020020)) is introduced and shown to be helpful for estimating the unknown number of factors in a simulation study. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.

摘要

本文讨论了施加在一系列参数上的收缩先验,这些先验会导致收缩程度逐渐增大。我们回顾了 Legramanti 的累积收缩过程(CUSP)先验(Legramanti. 2020 , 745-752. (doi:10.1093/biomet/asaa008)),这是一种尖峰-斑块收缩先验,其中尖峰概率是随机增加的,并且由狄利克雷过程先验的棒状断裂表示构造而成。作为第一项贡献,我们通过涉及来自贝塔分布的任意棒状断裂表示来扩展这个 CUSP 先验。作为第二项贡献,我们证明了在稀疏贝叶斯因子分析中广泛使用的可交换尖峰-斑块先验可以表示为有限的广义 CUSP 先验,从斑块概率的降序排序中很容易得到这个先验。因此,可交换的尖峰-斑块收缩先验意味着随着加载矩阵中的列索引增加而导致收缩程度逐渐增大,而不会对斑块概率施加显式的顺序约束。稀疏贝叶斯因子分析的应用说明了本文发现的有用性。引入了基于 Cadonna 的三重伽马先验(Cadonna. 2020 , 20. (doi:10.3390/econometrics8020020))的新的可交换尖峰-斑块收缩先验,并在模拟研究中表明它有助于估计未知的因子数量。本文是“贝叶斯推断:挑战、视角和前景”主题特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验